Models of universe with a polytropic equation of state: II. The late universe

被引:0
|
作者
Pierre-Henri Chavanis
机构
[1] Université de Toulouse,Laboratoire de Physique Théorique (IRSAMC)
关键词
Dark Matter; Dark Energy; Early Universe; Vacuum Energy; Friedmann Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We construct models of universe with a generalized equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p=(\alpha \rho+k\rho^{1+1/n})c^{2}$\end{document} having a linear component and a polytropic component. Concerning the linear equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p=\alpha\rho c^{2}$\end{document}, we assume \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ -1\le \alpha\le 1$\end{document}. This equation of state describes radiation (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \alpha=1/3$\end{document}) or pressureless matter (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \alpha=0$\end{document}). Concerning the polytropic equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p=k\rho^{1+1/n} c^{2}$\end{document}, we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider negative indices n < 0. In this case, the polytropic component dominates the linear component in the late universe where the density is low. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \alpha=0$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n=-1$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ k=-\rho_{\Lambda}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho_{\Lambda}=7.02 10^{-24}$\end{document} g/m3 is the cosmological density, we obtain a model of late universe describing the transition from the matter era to the dark energy era. The universe exists at any time in the future and there is no singularity. It undergoes an inflationary expansion (exponential acceleration) with the cosmological density \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho_{\Lambda}=7.02 10^{-24}$\end{document} g/m3 (dark energy) on a timescale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ t_{\Lambda}=1.46 10^{18}$\end{document} s. Coincidentally, we live close to the transition between the matter era and the dark energy era, corresponding to a size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ a_{2}=8.95 10^{25}$\end{document} m and a time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ t_{2}=2.97 10^{17}$\end{document} s. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \alpha=0$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n=-1$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ k=\rho_{\Lambda}$\end{document}, we obtain a model of cyclic universe appearing and disappearing periodically. If we were living in this universe, it would disappear in about 2.38 billion years. We make the connection between the early and the late universe and propose a simple equation describing the whole evolution of the universe. This leads to a model of universe that is eternal in past and future without singularity (aioniotic universe). It refines the standard \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Lambda$\end{document} CDM model by incorporating naturally a phase of early inflation and removing the primordial singularity (Big Bang). This model exhibits a nice “symmetry” between the early and the late universe, the cosmological constant in the late universe playing the same role as the Planck constant in the early universe. The pressure is successively negative (early inflation), positive (radiation and matter eras), and negative again (late inflation). We interpret the cosmological constant as a fundamental constant of nature describing the “cosmophysics” just like the Planck constant describes the “microphysics”. The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant “problem” may be a false problem. We determine the potential of the scalar field (quintessence, tachyon field) corresponding to the generalized equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p=(\alpha \rho+k\rho^{1+1/n})c^{2}$\end{document}. We also propose a unification of vacuum energy, radiation, and dark energy through the quadratic equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p/c^{2}=-4\rho^{2}/3\rho_{P}+\rho/3 - 4\rho_{\Lambda}/3$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Probing the Universe with the Ly α forest -: II.: The column density distribution
    Gnedin, NY
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 299 (02) : 392 - 402
  • [42] Clustering of galaxies in a hierarchical universe - II. Evolution to high redshift
    Kauffmann, G
    Colbeg, JM
    Diaferio, A
    White, SDM
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 307 (03) : 529 - 536
  • [43] FRW universe models in conformally flat-spacetime coordinates II: Universe models with negative and vanishing spatial curvature
    Gron, O.
    Johannesen, S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (03): : 1 - 19
  • [44] Tunneling wave function of the universe. II. The backreaction problem
    Vilenkin, Alexander
    Yamada, Masaki
    PHYSICAL REVIEW D, 2019, 99 (06)
  • [45] Global chemical evolution - II. The mean metal abundance of the Universe
    Department of Physics and Astronomy, University of Wales, College of Cardiff, PO Box 913, Cardiff CF2 3YB, United Kingdom
    不详
    Mon. Not. R. Astron. Soc., 3 (733-747):
  • [46] FRW universe models in conformally flat-spacetime coordinates II: Universe models with negative and vanishing spatial curvature
    Ø. Grøn
    S. Johannesen
    The European Physical Journal Plus, 126
  • [47] Scalar perturbations in the late Universe: viability of the Chaplygin gas models
    Bouhmadi-Lopez, Mariam
    Brilenkov, Maxim
    Brilenkov, Ruslan
    Morais, Joao
    Zhuk, Alexander
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (12):
  • [48] The Simplest Parametrization of the Equation of State Parameter in the Scalar Field Universe
    Shrivastava, Preeti
    Khan, Abdul Junaid
    Kumar, Mukesh
    Goswami, Gopikant
    Singh, Jainendra Kumar
    Yadav, Anil Kumar
    GALAXIES, 2023, 11 (02):
  • [49] Observations in a locally inhomogeneous Universe and Dark Energy State Equation
    Illa, R. L.
    Cepa, Jordi
    SPANISH RELATIVITY MEETING (ERE 2010): GRAVITY AS A CROSSROAD IN PHYSICS, 2011, 314
  • [50] Cosmographic analysis of the equation of state of the universe through Pade approximations
    Gruber, Christine
    Luongo, Orlando
    PHYSICAL REVIEW D, 2014, 89 (10):