Models of universe with a polytropic equation of state: II. The late universe

被引:0
|
作者
Pierre-Henri Chavanis
机构
[1] Université de Toulouse,Laboratoire de Physique Théorique (IRSAMC)
关键词
Dark Matter; Dark Energy; Early Universe; Vacuum Energy; Friedmann Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We construct models of universe with a generalized equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p=(\alpha \rho+k\rho^{1+1/n})c^{2}$\end{document} having a linear component and a polytropic component. Concerning the linear equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p=\alpha\rho c^{2}$\end{document}, we assume \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ -1\le \alpha\le 1$\end{document}. This equation of state describes radiation (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \alpha=1/3$\end{document}) or pressureless matter (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \alpha=0$\end{document}). Concerning the polytropic equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p=k\rho^{1+1/n} c^{2}$\end{document}, we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider negative indices n < 0. In this case, the polytropic component dominates the linear component in the late universe where the density is low. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \alpha=0$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n=-1$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ k=-\rho_{\Lambda}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho_{\Lambda}=7.02 10^{-24}$\end{document} g/m3 is the cosmological density, we obtain a model of late universe describing the transition from the matter era to the dark energy era. The universe exists at any time in the future and there is no singularity. It undergoes an inflationary expansion (exponential acceleration) with the cosmological density \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rho_{\Lambda}=7.02 10^{-24}$\end{document} g/m3 (dark energy) on a timescale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ t_{\Lambda}=1.46 10^{18}$\end{document} s. Coincidentally, we live close to the transition between the matter era and the dark energy era, corresponding to a size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ a_{2}=8.95 10^{25}$\end{document} m and a time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ t_{2}=2.97 10^{17}$\end{document} s. For \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \alpha=0$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n=-1$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ k=\rho_{\Lambda}$\end{document}, we obtain a model of cyclic universe appearing and disappearing periodically. If we were living in this universe, it would disappear in about 2.38 billion years. We make the connection between the early and the late universe and propose a simple equation describing the whole evolution of the universe. This leads to a model of universe that is eternal in past and future without singularity (aioniotic universe). It refines the standard \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Lambda$\end{document} CDM model by incorporating naturally a phase of early inflation and removing the primordial singularity (Big Bang). This model exhibits a nice “symmetry” between the early and the late universe, the cosmological constant in the late universe playing the same role as the Planck constant in the early universe. The pressure is successively negative (early inflation), positive (radiation and matter eras), and negative again (late inflation). We interpret the cosmological constant as a fundamental constant of nature describing the “cosmophysics” just like the Planck constant describes the “microphysics”. The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant “problem” may be a false problem. We determine the potential of the scalar field (quintessence, tachyon field) corresponding to the generalized equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p=(\alpha \rho+k\rho^{1+1/n})c^{2}$\end{document}. We also propose a unification of vacuum energy, radiation, and dark energy through the quadratic equation of state \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ p/c^{2}=-4\rho^{2}/3\rho_{P}+\rho/3 - 4\rho_{\Lambda}/3$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] QCD equation of state and cosmological parameters in the early universe
    Castorina, P.
    Greco, V.
    Plumari, S.
    PHYSICAL REVIEW D, 2015, 92 (06):
  • [32] The development of perturbations in the universe described by the nonstationary equation of state
    Chechin, L. M.
    Myrzakul, Sh R.
    RUSSIAN PHYSICS JOURNAL, 2009, 52 (03) : 286 - 293
  • [33] The state of the Universe
    Peter Coles
    Nature, 2005, 433 : 248 - 256
  • [34] The state of the Universe
    Coles, P
    NATURE, 2005, 433 (7023) : 248 - 256
  • [35] The state of the Universe
    Jeffrey Forshaw
    Nature, 2004, 431 (7010) : 741 - 742
  • [36] THE VERY LATE UNIVERSE
    MARKOV, MA
    JETP LETTERS, 1992, 56 (04) : 181 - 184
  • [37] A varying polytropic gas universe and phase space analysis
    Khurshudyan, M.
    MODERN PHYSICS LETTERS A, 2016, 31 (16)
  • [38] THE COYOTE UNIVERSE. II. COSMOLOGICAL MODELS AND PRECISION EMULATION OF THE NONLINEAR MATTER POWER SPECTRUM
    Heitmann, Katrin
    Higdon, David
    White, Martin
    Habib, Salman
    Williams, Brian J.
    Lawrence, Earl
    Wagner, Christian
    ASTROPHYSICAL JOURNAL, 2009, 705 (01): : 156 - 174
  • [39] Particle creation in a tunneling universe. II. Massive particles
    Hong, JY
    Vilenkin, A
    Winitzki, S
    PHYSICAL REVIEW D, 2003, 68 (02)
  • [40] Global chemical evolution - II. The mean metal abundance of the Universe
    Edmunds, MG
    Phillipps, S
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1997, 292 (03) : 733 - 747