A New Large N Expansion for General Matrix–Tensor Models

被引:0
|
作者
Frank Ferrari
Vincent Rivasseau
Guillaume Valette
机构
[1] Université Libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique
[2] Center for the Theoretical Physics of the Universe,Fields, Gravity and Strings
[3] Institute for Basic Sciences,Laboratoire de Physique Théorique, CNRS UMR 8627
[4] Université Paris-Sud,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We define a new large N limit for general O(N)R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(N)^{R}$$\end{document} or U(N)R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {U}(N)^{R}$$\end{document} invariant tensor models, based on an enhanced large N scaling of the coupling constants. The resulting large N expansion is organized in terms of a half-integer associated with Feynman graphs that we call the index. This index has a natural interpretation in terms of the many matrix models embedded in the tensor model. Our new scaling can be shown to be optimal for a wide class of non-melonic interactions, which includes all the maximally single-trace terms. Our construction allows to define a new large D expansion of the sum over diagrams of fixed genus in matrix models with an additional O(D)r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(D)^{r}$$\end{document} global symmetry. When the interaction is the complete vertex of order R+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R+1$$\end{document}, we identify in detail the leading order graphs for R a prime number. This slightly surprising condition is equivalent to the complete interaction being maximally single-trace.
引用
收藏
页码:403 / 448
页数:45
相关论文
共 50 条
  • [31] New 1/N expansions in random tensor models
    Valentin Bonzom
    Journal of High Energy Physics, 2013
  • [32] The 1 / N Expansion of the Symmetric Traceless and the Antisymmetric Tensor Models in Rank Three
    Dario Benedetti
    Sylvain Carrozza
    Razvan Gurau
    Maciej Kolanowski
    Communications in Mathematical Physics, 2019, 371 : 55 - 97
  • [33] The 1/N Expansion of the Symmetric Traceless and the Antisymmetric Tensor Models in Rank Three
    Benedetti, Dario
    Carrozza, Sylvain
    Gurau, Razvan
    Kolanowski, Maciej
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (01) : 55 - 97
  • [34] NEW CRITICAL-BEHAVIOR IN D=0 LARGE-N MATRIX MODELS
    DAS, SR
    DHAR, A
    SENGUPTA, AM
    WADIA, SR
    MODERN PHYSICS LETTERS A, 1990, 5 (13) : 1041 - 1056
  • [35] Large N classical dynamics of holographic matrix models
    Asplund, Curtis T.
    Berenstein, David
    Dzienkowski, Eric
    PHYSICAL REVIEW D, 2013, 87 (08):
  • [36] On the breakdown of perturbative integrability in large N matrix models
    Klose, T
    JOURNAL OF HIGH ENERGY PHYSICS, 2005, (10):
  • [37] THE LARGE-N MAGNETIZATION IN MATRIX MODELS REVISITED
    MONTALDI, E
    MOLINARI, L
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1993, 15 (2-3): : 293 - 298
  • [38] Large N matrix models and noncommutative Fisher information
    Agarwal, A
    Akant, L
    Krishnaswami, GS
    Rajeev, SG
    THEORETICAL PHYSICS: MRST 2002: A TRIBUTE TO GEORGE LEIBBRANDT, 2002, 646 : 173 - 176
  • [39] ON THE LARGE-N LIMIT IN SYMPLECTIC MATRIX MODELS
    ANDRIC, I
    JEVICKI, A
    LEVINE, H
    NUCLEAR PHYSICS B, 1983, 215 (02) : 307 - 315