A New Large N Expansion for General Matrix–Tensor Models

被引:0
|
作者
Frank Ferrari
Vincent Rivasseau
Guillaume Valette
机构
[1] Université Libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique
[2] Center for the Theoretical Physics of the Universe,Fields, Gravity and Strings
[3] Institute for Basic Sciences,Laboratoire de Physique Théorique, CNRS UMR 8627
[4] Université Paris-Sud,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We define a new large N limit for general O(N)R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(N)^{R}$$\end{document} or U(N)R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {U}(N)^{R}$$\end{document} invariant tensor models, based on an enhanced large N scaling of the coupling constants. The resulting large N expansion is organized in terms of a half-integer associated with Feynman graphs that we call the index. This index has a natural interpretation in terms of the many matrix models embedded in the tensor model. Our new scaling can be shown to be optimal for a wide class of non-melonic interactions, which includes all the maximally single-trace terms. Our construction allows to define a new large D expansion of the sum over diagrams of fixed genus in matrix models with an additional O(D)r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(D)^{r}$$\end{document} global symmetry. When the interaction is the complete vertex of order R+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R+1$$\end{document}, we identify in detail the leading order graphs for R a prime number. This slightly surprising condition is equivalent to the complete interaction being maximally single-trace.
引用
收藏
页码:403 / 448
页数:45
相关论文
共 50 条
  • [21] The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension
    Gurau, Razvan
    ANNALES HENRI POINCARE, 2012, 13 (03): : 399 - 423
  • [22] The 1/N Expansion of Multi-Orientable Random Tensor Models
    Dartois, Stephane
    Rivasseau, Vincent
    Tanasa, Adrian
    ANNALES HENRI POINCARE, 2014, 15 (05): : 965 - 984
  • [23] The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension
    Razvan Gurau
    Annales Henri Poincaré, 2012, 13 : 399 - 423
  • [24] MATRIX MODELS AND LARGE-N BEHAVIOR
    Klauder, John R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (3-4):
  • [25] THE DOUBLE-WELL PHASE OF MATRIX MODELS - THE LARGE-N GENERAL-SOLUTION
    MOLINARI, L
    MONTALDI, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21): : 4995 - 5001
  • [26] Variational principle for large N matrix models
    Akant, L
    Krishnaswami, GS
    Rajeev, SG
    THEORETICAL HIGH ENERGY PHYSICS: MRST 2001: A TRIBUTE TO ROGER MIGNERON, 2001, 601 : 267 - 273
  • [27] Large-N matrix models and applications
    Kawai, H
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 95 - 95
  • [28] On the large D expansion of Hermitian multi-matrix models
    Carrozza, Sylvain
    Ferrari, Frank
    Tanasa, Adrian
    Valette, Guillaume
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (07)
  • [29] Critical behavior of colored tensor models in the large N limit
    Bonzom, Valentin
    Gurau, Razvan
    Riello, Aldo
    Rivasseau, Vincent
    NUCLEAR PHYSICS B, 2011, 853 (01) : 174 - 195
  • [30] New 1/N expansions in random tensor models
    Bonzom, Valentin
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (06):