A New Large N Expansion for General Matrix–Tensor Models

被引:0
|
作者
Frank Ferrari
Vincent Rivasseau
Guillaume Valette
机构
[1] Université Libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique
[2] Center for the Theoretical Physics of the Universe,Fields, Gravity and Strings
[3] Institute for Basic Sciences,Laboratoire de Physique Théorique, CNRS UMR 8627
[4] Université Paris-Sud,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We define a new large N limit for general O(N)R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(N)^{R}$$\end{document} or U(N)R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {U}(N)^{R}$$\end{document} invariant tensor models, based on an enhanced large N scaling of the coupling constants. The resulting large N expansion is organized in terms of a half-integer associated with Feynman graphs that we call the index. This index has a natural interpretation in terms of the many matrix models embedded in the tensor model. Our new scaling can be shown to be optimal for a wide class of non-melonic interactions, which includes all the maximally single-trace terms. Our construction allows to define a new large D expansion of the sum over diagrams of fixed genus in matrix models with an additional O(D)r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {O}(D)^{r}$$\end{document} global symmetry. When the interaction is the complete vertex of order R+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R+1$$\end{document}, we identify in detail the leading order graphs for R a prime number. This slightly surprising condition is equivalent to the complete interaction being maximally single-trace.
引用
收藏
页码:403 / 448
页数:45
相关论文
共 50 条
  • [1] A New Large N Expansion for General Matrix-Tensor Models
    Ferrari, Frank
    Rivasseau, Vincent
    Valette, Guillaume
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (02) : 403 - 448
  • [2] The large-N expansion of unitary-matrix models
    Rossi, P
    Campostrini, M
    Vicari, E
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 302 (04): : 143 - 209
  • [3] The 1/N Expansion of Colored Tensor Models
    Razvan Gurau
    Annales Henri Poincaré, 2011, 12 : 829 - 847
  • [4] The 1/N Expansion of Colored Tensor Models
    Gurau, Razvan
    ANNALES HENRI POINCARE, 2011, 12 (05): : 829 - 847
  • [5] Random tensor models in the large N limit: Uncoloring the colored tensor models
    Bonzom, Valentin
    Gurau, Razvan
    Rivasseau, Vincent
    PHYSICAL REVIEW D, 2012, 85 (08):
  • [6] A REVIEW OF THE 1/N EXPANSION IN RANDOM TENSOR MODELS
    Gurau, R.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 651 - 662
  • [7] LARGE N EXPANSION IN DUAL MODELS
    VENEZIANO, G
    PHYSICS LETTERS B, 1974, B 52 (02) : 220 - 222
  • [8] Spectra of operators in large N tensor models
    Bulycheva, Ksenia
    Klebanov, Igor R.
    Milekhin, Alexey
    Tarnopolsky, Grigory
    PHYSICAL REVIEW D, 2018, 97 (02):
  • [9] Bosonic tensor models at large N and small ε
    Giombi, Simone
    Klebanov, Igor R.
    Tarnopolsky, Grigory
    PHYSICAL REVIEW D, 2017, 96 (10)
  • [10] The 1/N Expansion of Tensor Models Beyond Perturbation Theory
    Gurau, Razvan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (03) : 973 - 1019