Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons

被引:0
|
作者
Antonio Politi
Ekkehard Ullner
Alessandro Torcini
机构
[1] Institute for Complex Systems and Mathematical Biology and Department of Physics (SUPA),
[2] Old Aberdeen,undefined
[3] Laboratoire de Physique Théorique et Modélisation,undefined
[4] Université de Cergy-Pontoise,undefined
[5] CNRS,undefined
[6] UMR 8089,undefined
[7] CNR,undefined
[8] Consiglio Nazionale delle Ricerche,undefined
[9] Istituto dei Sistemi Complessi,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We extensively explore networks of weakly unbalanced, leaky integrate-and-fire (LIF) neurons for different coupling strength, connectivity, and by varying the degree of refractoriness, as well as the delay in the spike transmission. We find that the neural network does not only exhibit a microscopic (single-neuron) stochastic-like evolution, but also a collective irregular dynamics (CID). Our analysis is based on the computation of a suitable order parameter, typically used to characterize synchronization phenomena and on a detailed scaling analysis (i.e. simulations of different network sizes). As a result, we can conclude that CID is a true thermodynamic phase, intrinsically different from the standard asynchronous regime.
引用
收藏
页码:1185 / 1204
页数:19
相关论文
共 50 条
  • [1] Collective irregular dynamics in balanced networks of leaky integrate-and-fire neurons
    Politi, Antonio
    Ullner, Ekkehard
    Torcini, Alessandro
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (10-11): : 1185 - 1204
  • [2] Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials
    Burkitt, AN
    [J]. BIOLOGICAL CYBERNETICS, 2001, 85 (04) : 247 - 255
  • [3] Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials
    A. N. Burkitt
    [J]. Biological Cybernetics, 2001, 85 : 247 - 255
  • [4] Bump Attractors and Waves in Networks of Leaky Integrate-and-Fire Neurons
    Avitabile, Daniele
    Davis, Joshua L.
    Wedgwood, Kyle
    [J]. SIAM REVIEW, 2023, 65 (01) : 147 - 182
  • [5] Rate dynamics of leaky integrate-and-fire neurons with strong synapses
    Nordlie, Eilen
    Tetzlaff, Tom
    Einevoll, Gaute T.
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4
  • [6] Dynamics of Leaky Integrate-and-Fire Neurons Based on Oxyvanite Memristors for Spiking Neural Networks
    Das, Sujan Kumar
    Nandi, Sanjoy Kumar
    Marquez, Camilo Verbel
    Rua, Armando
    Uenuma, Mutsunori
    Nath, Shimul Kanti
    Zhang, Shuo
    Lin, Chun-Ho
    Chu, Dewei
    Ratcliff, Tom
    Elliman, Robert Glen
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2024,
  • [7] Purely Spintronic Leaky Integrate-and-Fire Neurons
    Brigner, Wesley H.
    Hassan, Naimul
    Hu, Xuan
    Bennett, Christopher H.
    Garcia-Sanchez, Felipe
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Friedman, Joseph S.
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1189 - 1193
  • [8] Collective behavior of networks with linear (VLSI) integrate-and-fire neurons
    Fusi, S
    Mattia, M
    [J]. NEURAL COMPUTATION, 1999, 11 (03) : 633 - 652
  • [9] Firing frequency of leaky integrate-and-fire neurons with synaptic current dynamics
    Brunel, N
    Sergi, S
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1998, 195 (01) : 87 - 95
  • [10] Three Artificial Spintronic Leaky Integrate-and-Fire Neurons
    Brigner, Wesley H.
    Hu, Xuan
    Hassan, Naimul
    Jiang-Wei, Lucian
    Bennett, Christopher H.
    Garcia-Sanchez, Felipe
    Akinola, Otitoaleke
    Pasquale, Massimo
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Friedman, Joseph S.
    [J]. SPIN, 2020, 10 (02)