Three Artificial Spintronic Leaky Integrate-and-Fire Neurons

被引:4
|
作者
Brigner, Wesley H. [1 ]
Hu, Xuan [1 ]
Hassan, Naimul [1 ]
Jiang-Wei, Lucian [1 ]
Bennett, Christopher H. [2 ]
Garcia-Sanchez, Felipe [3 ,4 ]
Akinola, Otitoaleke [5 ]
Pasquale, Massimo [3 ]
Marinella, Matthew J. [2 ]
Incorvia, Jean Anne C. [5 ]
Friedman, Joseph S. [1 ]
机构
[1] Univ Texas Dallas, Elect & Comp Engn, 800 W Campbell Rd, Richardson, TX 75080 USA
[2] Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87185 USA
[3] Ist Nazl Ric Metrol, Str Cacce 91, I-10135 Turin, Italy
[4] Univ Salamanca, Dept Fis Aplicada, Plaza Merced S-N, Salamanca 37008, Spain
[5] Univ Texas Austin, Elect & Comp Engn, 110 Inner Campus Dr, Austin, TX 78705 USA
基金
美国国家科学基金会;
关键词
Artificial neuron; leaky integrate-and-fire (LIF) neuron; magnetic domain wall (DW); neural network crossbar; neuromorphic computing; three-terminal magnetic tunnel junction (3T-MTJ);
D O I
10.1142/S2010324720400032
中图分类号
O59 [应用物理学];
学科分类号
摘要
Due to their nonvolatility and intrinsic current integration capabilities, spintronic devices that rely on domain wall (DW) motion through a free ferromagnetic track have garnered significant interest in the field of neuromorphic computing. Although a number of such devices have already been proposed, they require the use of external circuitry to implement several important neuronal behaviors. As such, they are likely to result in either a decrease in energy efficiency, an increase in fabrication complexity, or even both. To resolve this issue, we have proposed three individual neurons that are capable of performing these functionalities without the use of any external circuitry. To implement leaking, the first neuron uses a dipolar coupling field, the second uses an anisotropy gradient and the third uses shape variations of the DW track.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Purely Spintronic Leaky Integrate-and-Fire Neurons
    Brigner, Wesley H.
    Hassan, Naimul
    Hu, Xuan
    Bennett, Christopher H.
    Garcia-Sanchez, Felipe
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Friedman, Joseph S.
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1189 - 1193
  • [2] Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices
    Wang, Cheng
    Lee, Chankyu
    Roy, Kaushik
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices
    Cheng Wang
    Chankyu Lee
    Kaushik Roy
    [J]. Scientific Reports, 12
  • [4] Shape-Based Magnetic Domain Wall Drift for an Artificial Spintronic Leaky Integrate-and-Fire Neuron
    Brigner, Wesley H.
    Friedman, Joseph S.
    Hassan, Naimul
    Jiang-Wei, Lucian
    Hu, Xuan
    Saha, Diptish
    Bennett, Christopher H.
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Garcia-Sanchez, Felipe
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (11) : 4970 - 4975
  • [5] Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials
    Burkitt, AN
    [J]. BIOLOGICAL CYBERNETICS, 2001, 85 (04) : 247 - 255
  • [6] Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials
    A. N. Burkitt
    [J]. Biological Cybernetics, 2001, 85 : 247 - 255
  • [7] Rate dynamics of leaky integrate-and-fire neurons with strong synapses
    Nordlie, Eilen
    Tetzlaff, Tom
    Einevoll, Gaute T.
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4
  • [8] Bump Attractors and Waves in Networks of Leaky Integrate-and-Fire Neurons
    Avitabile, Daniele
    Davis, Joshua L.
    Wedgwood, Kyle
    [J]. SIAM REVIEW, 2023, 65 (01) : 147 - 182
  • [9] Directed Information Between Connected Leaky Integrate-and-Fire Neurons
    Soltani, Nima
    Goldsmith, Andrea
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1291 - 1295
  • [10] Dynamic Image Quantization Using Leaky Integrate-and-Fire Neurons
    Doutsi, Effrosyni
    Fillatre, Lionel
    Antonini, Marc
    Tsakalides, Panagiotis
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4305 - 4315