Purely Spintronic Leaky Integrate-and-Fire Neurons

被引:4
|
作者
Brigner, Wesley H. [1 ]
Hassan, Naimul [1 ]
Hu, Xuan [1 ]
Bennett, Christopher H. [2 ]
Garcia-Sanchez, Felipe [3 ,4 ]
Marinella, Matthew J. [6 ]
Incorvia, Jean Anne C. [5 ]
Friedman, Joseph S. [1 ]
机构
[1] Univ Texas Dallas, Elect & Comp Engn, Richardson, TX 75080 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
[3] Ist Nazl Ric Metrol, Turin, Italy
[4] Univ Salamanca, Dept Appl Phys, Salamanca 37008, Spain
[5] Univ Texas Austin, Elect & Comp Engn, Austin, TX 78705 USA
[6] Arizona State Univ, Elect & Comp Engn, Tempe, AZ 85287 USA
关键词
Artificial neural network; Neuromorphic computing; Leaky integrate-and-fire neuron; NETWORK;
D O I
10.1109/ISCAS48785.2022.9937890
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Neuromorphic computing promises revolutionary improvements over conventional systems for applications that process unstructured information. To fully realize this potential, neuromorphic systems should exploit the biomimetic behavior of emerging nanodevices. In particular, exceptional opportunities are provided by the non-volatility and analog capabilities of spintronic devices. While spintronic devices that emulate neurons have been previously proposed, they require complementary metal-oxide semiconductor (CMOS) technology to function. In turn, this significantly increases the power consumption, fabrication complexity, and device area of a single neuron. This work reviews three previously proposed
引用
收藏
页码:1189 / 1193
页数:5
相关论文
共 50 条
  • [1] Three Artificial Spintronic Leaky Integrate-and-Fire Neurons
    Brigner, Wesley H.
    Hu, Xuan
    Hassan, Naimul
    Jiang-Wei, Lucian
    Bennett, Christopher H.
    Garcia-Sanchez, Felipe
    Akinola, Otitoaleke
    Pasquale, Massimo
    Marinella, Matthew J.
    Incorvia, Jean Anne C.
    Friedman, Joseph S.
    [J]. SPIN, 2020, 10 (02)
  • [2] Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices
    Wang, Cheng
    Lee, Chankyu
    Roy, Kaushik
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Noise resilient leaky integrate-and-fire neurons based on multi-domain spintronic devices
    Cheng Wang
    Chankyu Lee
    Kaushik Roy
    [J]. Scientific Reports, 12
  • [4] Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials
    Burkitt, AN
    [J]. BIOLOGICAL CYBERNETICS, 2001, 85 (04) : 247 - 255
  • [5] Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials
    A. N. Burkitt
    [J]. Biological Cybernetics, 2001, 85 : 247 - 255
  • [6] Rate dynamics of leaky integrate-and-fire neurons with strong synapses
    Nordlie, Eilen
    Tetzlaff, Tom
    Einevoll, Gaute T.
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2010, 4
  • [7] Bump Attractors and Waves in Networks of Leaky Integrate-and-Fire Neurons
    Avitabile, Daniele
    Davis, Joshua L.
    Wedgwood, Kyle
    [J]. SIAM REVIEW, 2023, 65 (01) : 147 - 182
  • [8] Directed Information Between Connected Leaky Integrate-and-Fire Neurons
    Soltani, Nima
    Goldsmith, Andrea
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1291 - 1295
  • [9] Dynamic Image Quantization Using Leaky Integrate-and-Fire Neurons
    Doutsi, Effrosyni
    Fillatre, Lionel
    Antonini, Marc
    Tsakalides, Panagiotis
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4305 - 4315
  • [10] Directed Information Between Connected Leaky Integrate-and-Fire Neurons
    Soltani, Nima
    Goldsmith, Andrea J.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5954 - 5967