q-Gaussian Processes: Non-commutative and Classical Aspects

被引:0
|
作者
M. Bożejko
B. Kümmerer
R. Speicher
机构
[1] Instytut Matematyczny,
[2] Uniwersytet Wrocławski,undefined
[3] Plac Grunwaldzki 2/4,undefined
[4] 50-384 Wrocław,undefined
[5] Poland.¶E-mail: bozejko@math.uni.wroc.pl,undefined
[6] Mathematisches Institut A,undefined
[7] Pfaffenwaldring 57,undefined
[8] D-70569 Stuttgart,undefined
[9] Germany.¶E-mail: kuem@mathematik.uni-stuttgart.de ,undefined
[10] Institut für Angewandte Mathematik,undefined
[11] Universität Heidelberg,undefined
[12] Im Neuenheimer Feld 294,undefined
[13] D-69120 Heidelberg,undefined
[14] Germany.¶E-mail: roland.speicher@urz.uni-heidelberg.de,undefined
来源
关键词
Covariance; Hilbert Space; Large Class; Covariance Function; Vacuum Expectation;
D O I
暂无
中图分类号
学科分类号
摘要
We examine, for −1<q<1, q-Gaussian processes, i.e. families of operators (non-commutative random variables) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}– where the at fulfill the q-commutation relations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for some covariance function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}– equipped with the vacuum expectation state. We show that there is a q-analogue of the Gaussian functor of second quantization behind these processes and that this structure can be used to translate questions on q-Gaussian processes into corresponding (and much simpler) questions in the underlying Hilbert space. In particular, we use this idea to show that a large class of q-Gaussian processes possesses a non-commutative kind of Markov property, which ensures that there exist classical versions of these non-commutative processes. This answers an old question of Frisch and Bourret [FB].
引用
收藏
页码:129 / 154
页数:25
相关论文
共 50 条
  • [1] q-Gaussian processes: Non-commutative and classical aspects
    Bozejko, M
    Kummerer, B
    Speicher, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (01) : 129 - 154
  • [2] Process Dimension of Classical and Non-Commutative Processes
    Loehr, Wolfgang
    Szkola, Arleta
    Ay, Nihat
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2012, 19 (01):
  • [3] Strong mixing coefficients for non-commutative Gaussian processes
    Bryc, W
    Kaftal, V
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 523 - 534
  • [4] THE LOCAL STRUCTURE OF q-GAUSSIAN PROCESSES
    Bryc, Wlodzimierz
    Wang, Yizao
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (02): : 335 - 352
  • [5] Classical versions of q-gaussian processes:: Conditional moments and Bell's inequality
    Bryc, W
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (02) : 259 - 270
  • [6] Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra
    Mendes, R. Vilela
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [7] Classical Versions of q-Gaussian Processes:¶Conditional Moments and Bell's Inequality
    Wlodzimierz Bryc
    [J]. Communications in Mathematical Physics, 2001, 219 : 259 - 270
  • [8] NON-COMMUTATIVE PROCESSES IN A(K)
    HAUDIDIER, D
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (05): : 321 - 323
  • [9] CLASSICAL BOSONS IN A NON-COMMUTATIVE GEOMETRY
    DUBOISVIOLETTE, M
    KERNER, R
    MADORE, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (11) : 1709 - 1724
  • [10] Non-Commutative Worlds and Classical Constraints
    Kauffman, Louis H.
    [J]. ENTROPY, 2018, 20 (07):