q-Gaussian processes: Non-commutative and classical aspects

被引:244
|
作者
Bozejko, M
Kummerer, B
Speicher, R
机构
[1] UNIV STUTTGART,INST MATH A,D-70569 STUTTGART,GERMANY
[2] UNIV HEIDELBERG,INST ANGEW MATH,D-69120 HEIDELBERG,GERMANY
关键词
D O I
10.1007/s002200050084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine, for -1 < q < 1, q-Gaussian processes, i.e. families of operators (non-commutative random variables) X-t = a(t) + a(t)* - where the a(t) fulfill the q-commutation relations a(s)a(t)* - qa(t)*a(s) = c(s, t) . 1 for some covariance function c(.,.) - equipped with the vacuum expectation state. We show that there is a q-analogue of the Gaussian functor of second quantization behind these processes and that this structure can be used to translate questions on q-Gaussian processes into corresponding (and much simpler) questions in the underlying Hilbert space. In particular, we use this idea to show that a large class of q-Gaussian processes possesses a non-commutative kind of Markov property, which ensures that there exist classical versions of these non-commutative processes. This answers an old question of Frisch and Bourret [FB].
引用
收藏
页码:129 / 154
页数:26
相关论文
共 50 条
  • [1] q-Gaussian Processes: Non-commutative and Classical Aspects
    M. Bożejko
    B. Kümmerer
    R. Speicher
    [J]. Communications in Mathematical Physics, 1997, 185 : 129 - 154
  • [2] Process Dimension of Classical and Non-Commutative Processes
    Loehr, Wolfgang
    Szkola, Arleta
    Ay, Nihat
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2012, 19 (01):
  • [3] Strong mixing coefficients for non-commutative Gaussian processes
    Bryc, W
    Kaftal, V
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 523 - 534
  • [4] THE LOCAL STRUCTURE OF q-GAUSSIAN PROCESSES
    Bryc, Wlodzimierz
    Wang, Yizao
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (02): : 335 - 352
  • [5] Classical versions of q-gaussian processes:: Conditional moments and Bell's inequality
    Bryc, W
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (02) : 259 - 270
  • [6] Non-commutative probability and non-commutative processes: Beyond the Heisenberg algebra
    Mendes, R. Vilela
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [7] Classical Versions of q-Gaussian Processes:¶Conditional Moments and Bell's Inequality
    Wlodzimierz Bryc
    [J]. Communications in Mathematical Physics, 2001, 219 : 259 - 270
  • [8] NON-COMMUTATIVE PROCESSES IN A(K)
    HAUDIDIER, D
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 289 (05): : 321 - 323
  • [9] CLASSICAL BOSONS IN A NON-COMMUTATIVE GEOMETRY
    DUBOISVIOLETTE, M
    KERNER, R
    MADORE, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (11) : 1709 - 1724
  • [10] Non-Commutative Worlds and Classical Constraints
    Kauffman, Louis H.
    [J]. ENTROPY, 2018, 20 (07):