Classical versions of q-gaussian processes:: Conditional moments and Bell's inequality

被引:10
|
作者
Bryc, W [1 ]
机构
[1] Univ Cincinnati, Dept Math, Cincinnati, OH 45221 USA
关键词
Linear Regression; Covariance; Entire Range; Conditional Variance; Classical Version;
D O I
10.1007/s002200100401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that classical processes corresponding to operators which satisfy a q-commutative relation have linear regressions and quadratic conditional variances. From this we deduce that Bell's inequality for their covariances can be extended from q = -1 to the entire range - 1 less than or equal to q < 1.
引用
收藏
页码:259 / 270
页数:12
相关论文
共 21 条
  • [1] Classical Versions of q-Gaussian Processes:¶Conditional Moments and Bell's Inequality
    Wlodzimierz Bryc
    [J]. Communications in Mathematical Physics, 2001, 219 : 259 - 270
  • [2] q-Gaussian Processes: Non-commutative and Classical Aspects
    M. Bożejko
    B. Kümmerer
    R. Speicher
    [J]. Communications in Mathematical Physics, 1997, 185 : 129 - 154
  • [3] q-Gaussian processes: Non-commutative and classical aspects
    Bozejko, M
    Kummerer, B
    Speicher, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (01) : 129 - 154
  • [4] THE LOCAL STRUCTURE OF q-GAUSSIAN PROCESSES
    Bryc, Wlodzimierz
    Wang, Yizao
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (02): : 335 - 352
  • [5] Conditional moments of q-Meixner processes
    Bryc, W
    Wesolowski, J
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2005, 131 (03) : 415 - 441
  • [6] Conditional moments of q-Meixner processes
    Włodzimierz Bryc
    Jacek Wesołowski
    [J]. Probability Theory and Related Fields, 2005, 131 : 415 - 441
  • [7] The various versions of Bell's inequality: an alternative proof
    Fakhri, H
    Taqavi, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (24): : 5565 - 5572
  • [8] PROBING BELL'S INEQUALITY WITH CLASSICAL SYSTEMS
    Ferry, D. K.
    [J]. FLUCTUATION AND NOISE LETTERS, 2010, 9 (04): : 395 - 402
  • [9] Violation of Bell's inequality by correlations of classical random signals
    Khrennikov, A.
    [J]. PHYSICA SCRIPTA, 2012, T151
  • [10] Experimental violation of Bell's inequality by local classical variables
    Accardi, L
    Regoli, M
    [J]. STATISTICAL PHYSICS, 2000, 519 : 645 - 648