Conflict-Free Coloring of String Graphs

被引:0
|
作者
Chaya Keller
Alexandre Rok
Shakhar Smorodinsky
机构
[1] Ariel University,Department of Computer Science
[2] Ben-Gurion University of the Negev,Department of Mathematics
来源
关键词
Conflict-free coloring; String graphs; -CF coloring; Circle graphs; Grounded L-shapes;
D O I
暂无
中图分类号
学科分类号
摘要
Conflict-free coloring (in short, CF-coloring) of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} is a coloring of V such that the punctured neighborhood of each vertex contains a vertex whose color differs from the color of any other vertex in that neighborhood. Bounds on CF-chromatic numbers have been studied both for general graphs and for intersection graphs of geometric shapes. In this paper we obtain such bounds for several classes of string graphs, i.e., intersection graphs of curves in the plane: (i) we provide a general upper bound of O(χ(G)2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\chi (G)^2 \log n)$$\end{document} on the CF-chromatic number of any string graph G with n vertices in terms of the classical chromatic number χ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G)$$\end{document}. This result stands in contrast to general graphs where the CF-chromatic number can be Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n})$$\end{document} already for bipartite graphs. (ii) For some central classes of string graphs, the CF-chromatic number is as large as Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (\sqrt{n})$$\end{document}, which was shown to be the upper bound for any graph even in the non-geometric context. For several such classes (e.g., intersection graphs of frames) we prove a tight bound of Θ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (\log n)$$\end{document} with respect to the relaxed notion of k-CF-coloring (in which the punctured neighborhood of each vertex contains a color that appears at most k times), for a small constant k. (iii) We obtain a general upper bound on the k-CF chromatic number of arbitrary hypergraphs (i.e., the number of colors needed to color the vertices, such that in each hyperedge there is a color that appears at most k times): any hypergraph with m hyperedges can be k-CF colored with O~(m1k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{O}}\bigl (m^{\frac{1}{k+1}}\bigr )$$\end{document} colors. This bound, which extends a bound of Pach and Tardos (Comb Probab Comput 18(5):819–834, 2009), is tight for some string graphs, up to a logarithmic factor. (iv) Our fourth result concerns circle graphs in which coloring problems are motivated by VLSI designs. We prove a tight bound of Θ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (\log n)$$\end{document} on the CF-chromatic number of circle graphs, and an upper bound of O(log3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^{3} n)$$\end{document} for a wider class of string graphs that contains circle graphs, namely, intersection graphs of grounded L-shapes.
引用
收藏
页码:1337 / 1372
页数:35
相关论文
共 50 条
  • [41] Conflict-Free Connection Numbers of Line Graphs
    Deng, Bo
    Li, Wenjing
    Li, Xueliang
    Mao, Yaping
    Zhao, Haixing
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT I, 2017, 10627 : 141 - 151
  • [42] Conflict-free connection number of random graphs
    Gu, Ran
    Li, Xueliang
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 283 : 522 - 532
  • [43] Graphs with Conflict-Free Connection Number Two
    Chang, Hong
    Trung Duy Doan
    Huang, Zhong
    Jendrol, Stanislav
    Li, Xueliang
    Schiermeyer, Ingo
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1553 - 1563
  • [44] Conflict-Free Connection Number and Size of Graphs
    Doan, Trung Duy
    Schiermeyer, Ingo
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (05) : 1859 - 1871
  • [45] Parameterized algorithms for conflict-free colorings of graphs
    Reddy, I. Vinod
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 745 : 53 - 62
  • [46] Conflict-Free Coloring of points on a line with respect to a set of intervals
    Katz, Matthew J.
    Lev-Tov, Nissan
    Morgenstern, Gila
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2012, 45 (09): : 508 - 514
  • [47] A tight bound for conflict-free coloring in terms of distance to cluster
    Bhyravarapu, Sriram
    Kalyanasundaram, Subrahmanyam
    [J]. DISCRETE MATHEMATICS, 2022, 345 (11)
  • [48] Conflict-Free Coloring for Rectangle Ranges Using (.382) Colors
    Ajwani, Deepak
    Elbassioni, Khaled
    Govindarajan, Sathish
    Ray, Saurabh
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (01) : 39 - 52
  • [49] Deterministic Conflict-Free Coloring for Intervals: From Offline to Online
    Bar-Noy, Amotz
    Cheilaris, Panagiotis
    Smorodinsky, Shakhar
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (04)
  • [50] Conflict-Free Connection Number of Graphs with Four Bridges
    Li, Zhenzhen
    Wu, Baoyindureng
    [J]. GRAPHS AND COMBINATORICS, 2023, 39 (03)