Conflict-Free Coloring of String Graphs

被引:0
|
作者
Chaya Keller
Alexandre Rok
Shakhar Smorodinsky
机构
[1] Ariel University,Department of Computer Science
[2] Ben-Gurion University of the Negev,Department of Mathematics
来源
关键词
Conflict-free coloring; String graphs; -CF coloring; Circle graphs; Grounded L-shapes;
D O I
暂无
中图分类号
学科分类号
摘要
Conflict-free coloring (in short, CF-coloring) of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} is a coloring of V such that the punctured neighborhood of each vertex contains a vertex whose color differs from the color of any other vertex in that neighborhood. Bounds on CF-chromatic numbers have been studied both for general graphs and for intersection graphs of geometric shapes. In this paper we obtain such bounds for several classes of string graphs, i.e., intersection graphs of curves in the plane: (i) we provide a general upper bound of O(χ(G)2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\chi (G)^2 \log n)$$\end{document} on the CF-chromatic number of any string graph G with n vertices in terms of the classical chromatic number χ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G)$$\end{document}. This result stands in contrast to general graphs where the CF-chromatic number can be Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n})$$\end{document} already for bipartite graphs. (ii) For some central classes of string graphs, the CF-chromatic number is as large as Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (\sqrt{n})$$\end{document}, which was shown to be the upper bound for any graph even in the non-geometric context. For several such classes (e.g., intersection graphs of frames) we prove a tight bound of Θ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (\log n)$$\end{document} with respect to the relaxed notion of k-CF-coloring (in which the punctured neighborhood of each vertex contains a color that appears at most k times), for a small constant k. (iii) We obtain a general upper bound on the k-CF chromatic number of arbitrary hypergraphs (i.e., the number of colors needed to color the vertices, such that in each hyperedge there is a color that appears at most k times): any hypergraph with m hyperedges can be k-CF colored with O~(m1k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{O}}\bigl (m^{\frac{1}{k+1}}\bigr )$$\end{document} colors. This bound, which extends a bound of Pach and Tardos (Comb Probab Comput 18(5):819–834, 2009), is tight for some string graphs, up to a logarithmic factor. (iv) Our fourth result concerns circle graphs in which coloring problems are motivated by VLSI designs. We prove a tight bound of Θ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (\log n)$$\end{document} on the CF-chromatic number of circle graphs, and an upper bound of O(log3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^{3} n)$$\end{document} for a wider class of string graphs that contains circle graphs, namely, intersection graphs of grounded L-shapes.
引用
收藏
页码:1337 / 1372
页数:35
相关论文
共 50 条
  • [21] CONFLICT-FREE CONNECTIONS OF GRAPHS
    Czap, Julius
    Jendrol, Stanislav
    Valiska, Juraj
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 911 - 920
  • [22] On conflict-free connection of graphs
    Chang, Hong
    Huang, Zhong
    Li, Xueliang
    Mao, Yaping
    Zhao, Haixing
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 255 : 167 - 182
  • [23] A short note on conflict-free coloring on closed neighborhoods of bounded degree graphs
    Bhyravarapu, Sriram
    Kalyanasundaram, Subrahmanyam
    Mathew, Rogers
    [J]. JOURNAL OF GRAPH THEORY, 2021, 97 (04) : 553 - 556
  • [24] Conflict-Free Colouring of Graphs
    Glebov, Roman
    Szabo, Tibor
    Tardos, Gabor
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2014, 23 (03): : 434 - 448
  • [25] Tight online conflict-free coloring of intervals
    Abam, M. A.
    [J]. SCIENTIA IRANICA, 2021, 28 (03) : 1493 - 1496
  • [26] Tight online conflict-free coloring of intervals
    Abam, Mohammad Ali
    [J]. Scientia Iranica, 2021, 28 (3 D) : 1493 - 1496
  • [27] Conflict-Free Coloring Bounds on Open Neighborhoods
    Bhyravarapu, Sriram
    Kalyanasundaram, Subrahmanyam
    Mathew, Rogers
    [J]. ALGORITHMICA, 2022, 84 (08) : 2154 - 2185
  • [28] PARAMETERIZED COMPLEXITY OF CONFLICT-FREE GRAPH COLORING
    Bodlaender, Hans L.
    Kolay, Sudeshna
    Pieterse, Astrid
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 2003 - 2038
  • [29] Parameterized Complexity of Conflict-Free Graph Coloring
    Bodlaender, Hans L.
    Kolay, Sudeshna
    Pieterse, Astrid
    [J]. ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 168 - 180
  • [30] Conflict-Free Coloring Bounds on Open Neighborhoods
    Sriram Bhyravarapu
    Subrahmanyam Kalyanasundaram
    Rogers Mathew
    [J]. Algorithmica, 2022, 84 : 2154 - 2185