Conflict-Free Coloring of String Graphs

被引:0
|
作者
Chaya Keller
Alexandre Rok
Shakhar Smorodinsky
机构
[1] Ariel University,Department of Computer Science
[2] Ben-Gurion University of the Negev,Department of Mathematics
来源
关键词
Conflict-free coloring; String graphs; -CF coloring; Circle graphs; Grounded L-shapes;
D O I
暂无
中图分类号
学科分类号
摘要
Conflict-free coloring (in short, CF-coloring) of a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} is a coloring of V such that the punctured neighborhood of each vertex contains a vertex whose color differs from the color of any other vertex in that neighborhood. Bounds on CF-chromatic numbers have been studied both for general graphs and for intersection graphs of geometric shapes. In this paper we obtain such bounds for several classes of string graphs, i.e., intersection graphs of curves in the plane: (i) we provide a general upper bound of O(χ(G)2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\chi (G)^2 \log n)$$\end{document} on the CF-chromatic number of any string graph G with n vertices in terms of the classical chromatic number χ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (G)$$\end{document}. This result stands in contrast to general graphs where the CF-chromatic number can be Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n})$$\end{document} already for bipartite graphs. (ii) For some central classes of string graphs, the CF-chromatic number is as large as Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (\sqrt{n})$$\end{document}, which was shown to be the upper bound for any graph even in the non-geometric context. For several such classes (e.g., intersection graphs of frames) we prove a tight bound of Θ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (\log n)$$\end{document} with respect to the relaxed notion of k-CF-coloring (in which the punctured neighborhood of each vertex contains a color that appears at most k times), for a small constant k. (iii) We obtain a general upper bound on the k-CF chromatic number of arbitrary hypergraphs (i.e., the number of colors needed to color the vertices, such that in each hyperedge there is a color that appears at most k times): any hypergraph with m hyperedges can be k-CF colored with O~(m1k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{O}}\bigl (m^{\frac{1}{k+1}}\bigr )$$\end{document} colors. This bound, which extends a bound of Pach and Tardos (Comb Probab Comput 18(5):819–834, 2009), is tight for some string graphs, up to a logarithmic factor. (iv) Our fourth result concerns circle graphs in which coloring problems are motivated by VLSI designs. We prove a tight bound of Θ(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (\log n)$$\end{document} on the CF-chromatic number of circle graphs, and an upper bound of O(log3n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log ^{3} n)$$\end{document} for a wider class of string graphs that contains circle graphs, namely, intersection graphs of grounded L-shapes.
引用
收藏
页码:1337 / 1372
页数:35
相关论文
共 50 条
  • [1] Conflict-Free Coloring of String Graphs
    Keller, Chaya
    Rok, Alexandre
    Smorodinsky, Shakhar
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (04) : 1337 - 1372
  • [2] CONFLICT-FREE COLORING OF GRAPHS
    Abel, Zachary
    Alvarez, Victor
    Demaine, Erik D.
    Fekete, Sandor P.
    Gour, Aman
    Hesterberg, Adam
    Keldenich, Phillip
    Scheffer, Christian
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 2675 - 2702
  • [3] A survey on conflict-free connection coloring of graphs☆
    Chang, Hong
    Huang, Zhong
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 352 : 88 - 104
  • [4] Conflict-Free Coloring of Intersection Graphs of Geometric Objects
    Keller, Chaya
    Smorodinsky, Shakhar
    [J]. SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 2397 - 2411
  • [5] Conflict-Free Coloring of Intersection Graphs of Geometric Objects
    Chaya Keller
    Shakhar Smorodinsky
    [J]. Discrete & Computational Geometry, 2020, 64 : 916 - 941
  • [6] Conflict-Free Coloring of Intersection Graphs of Geometric Objects
    Keller, Chaya
    Smorodinsky, Shakhar
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (03) : 916 - 941
  • [7] Conflict-Free Coloring: Graphs of Bounded Clique Width and Intersection Graphs
    Bhyravarapu, Sriram
    Hartmann, Tim A.
    Kalyanasundaram, Subrahmanyam
    Reddy, I. Vinod
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 92 - 106
  • [8] Three Colors Suffice: Conflict-Free Coloring of Planar Graphs
    Abel, Zachary
    Alvarez, Victor
    Demaine, Erik D.
    Fekete, Sandor P.
    Gour, Aman
    Hesterberg, Adam
    Keldenich, Phillip
    Scheffer, Christian
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1951 - 1963
  • [9] Conflict-Free Coloring: Graphs of Bounded Clique-Width and Intersection Graphs
    Bhyravarapu, Sriram
    Hartmann, Tim A.
    Hoang, Hung P.
    Kalyanasundaram, Subrahmanyam
    Reddy, I. Vinod
    [J]. ALGORITHMICA, 2024, 86 (07) : 2250 - 2288
  • [10] UNIQUE-MAXIMUM AND CONFLICT-FREE COLORING FOR HYPERGRAPHS AND TREE GRAPHS
    Cheilaris, Panagiotis
    Keszegh, Balazs
    Palvoelgyi, Doemoetoer
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1775 - 1787