The Riemann constant for a non-symmetric Weierstrass semigroup

被引:0
|
作者
Jiryo Komeda
Shigeki Matsutani
Emma Previato
机构
[1] Kanagawa Institute of Technology,Department of Mathematics, Center for Basic Education and Integrated Learning
[2] National Institute of Technology,Industrial Mathematics
[3] Sasebo College,Department of Mathematics and Statistics
[4] Boston University,undefined
来源
Archiv der Mathematik | 2016年 / 107卷
关键词
Riemann constant; Non-symmetric Weierstrass semigroup; Theta function; Abel map; Sigma function; Primary 14H55; Secondary 14H50; 14K25; 14H40;
D O I
暂无
中图分类号
学科分类号
摘要
The zero divisor of the theta function of a compact Riemann surface X of genus g is the canonical theta divisor of Pic(g-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${^{(g-1)}}$$\end{document} up to translation by the Riemann constant Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} for a base point P of X. The complement of the Weierstrass gaps at the base point P gives a numerical semigroup, called the Weierstrass semigroup. It is classically known that the Riemann constant Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} is a half period, namely an element of 12Γτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2} \Gamma_\tau}$$\end{document} , for the Jacobi variety J(X)=Cg/Γτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{J}(X)=\mathbb{C}^{g}/\Gamma_\tau}$$\end{document} of X if and only if the Weierstrass semigroup at P is symmetric. In this article, we analyze the non-symmetric case. Using a semi-canonical divisor D0, we express the relation between the Riemann constant Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} and a half period in the non-symmetric case. We point out an application to an algebraic expression for the Jacobi inversion problem. We also identify the semi-canonical divisor D0 for trigonal pointed curves, namely with total ramification at P.
引用
收藏
页码:499 / 509
页数:10
相关论文
共 50 条
  • [41] On a non-symmetric problem in electrochemical machining
    Wegert, E
    Oestreich, D
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1997, 20 (10) : 841 - 854
  • [42] HTFETI method for non-symmetric problems
    1600, Civil-Comp Press (111):
  • [43] NON-SYMMETRIC SPHERULITES - NEPHRASTERANIC ACID
    PRASAD, PBV
    PRASAD, ND
    CRYSTAL RESEARCH AND TECHNOLOGY, 1989, 24 (10) : K183 - K186
  • [44] Quantum features of non-symmetric geometries
    Wanas, MI
    Kahil, ME
    GENERAL RELATIVITY AND GRAVITATION, 1999, 31 (12) : 1921 - 1929
  • [45] MEASURES OF BETWEENNESS IN NON-SYMMETRIC NETWORKS
    GOULD, RV
    SOCIAL NETWORKS, 1987, 9 (03) : 277 - 282
  • [46] A numerical study of non-symmetric joints
    Berger, Edward
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCE AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2008, : 415 - 423
  • [47] Barnett relaxation in non-symmetric grains
    Kolasi, Erald
    Weingartner, Joseph C.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 471 (01) : 1222 - 1229
  • [48] Non-symmetric stapling of native peptides
    Chen, Fa-Jie
    Lin, Wanzhen
    Chen, Fen-Er
    NATURE REVIEWS CHEMISTRY, 2024, 8 (05) : 304 - 318
  • [49] On the non-symmetric semidefinite Procrustes problem
    Baghel, Mohit Kumar
    Gillis, Nicolas
    Sharma, Punit
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 648 : 133 - 159
  • [50] Equilibrium analysis of non-symmetric CNNs
    Arik, S
    Tavsanoglu, V
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1996, 24 (03) : 269 - 274