The Riemann constant for a non-symmetric Weierstrass semigroup

被引:0
|
作者
Jiryo Komeda
Shigeki Matsutani
Emma Previato
机构
[1] Kanagawa Institute of Technology,Department of Mathematics, Center for Basic Education and Integrated Learning
[2] National Institute of Technology,Industrial Mathematics
[3] Sasebo College,Department of Mathematics and Statistics
[4] Boston University,undefined
来源
Archiv der Mathematik | 2016年 / 107卷
关键词
Riemann constant; Non-symmetric Weierstrass semigroup; Theta function; Abel map; Sigma function; Primary 14H55; Secondary 14H50; 14K25; 14H40;
D O I
暂无
中图分类号
学科分类号
摘要
The zero divisor of the theta function of a compact Riemann surface X of genus g is the canonical theta divisor of Pic(g-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${^{(g-1)}}$$\end{document} up to translation by the Riemann constant Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} for a base point P of X. The complement of the Weierstrass gaps at the base point P gives a numerical semigroup, called the Weierstrass semigroup. It is classically known that the Riemann constant Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} is a half period, namely an element of 12Γτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2} \Gamma_\tau}$$\end{document} , for the Jacobi variety J(X)=Cg/Γτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{J}(X)=\mathbb{C}^{g}/\Gamma_\tau}$$\end{document} of X if and only if the Weierstrass semigroup at P is symmetric. In this article, we analyze the non-symmetric case. Using a semi-canonical divisor D0, we express the relation between the Riemann constant Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} and a half period in the non-symmetric case. We point out an application to an algebraic expression for the Jacobi inversion problem. We also identify the semi-canonical divisor D0 for trigonal pointed curves, namely with total ramification at P.
引用
收藏
页码:499 / 509
页数:10
相关论文
共 50 条
  • [21] Non-symmetric Linnik distributions
    Erdogan, MB
    Ostrovskii, IV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (05): : 511 - 516
  • [22] Riemann problems and wave interactions for a non-symmetric Keyfitz-Kranzer system with a source term
    He, Fen
    Chen, Tingting
    Zhang, Qingling
    Wang, Zhen
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (01)
  • [23] ON NON-SYMMETRIC MODULAR SPACES
    HERDA, HH
    COLLOQUIUM MATHEMATICUM, 1967, 17 (02) : 333 - &
  • [24] Non-symmetric Linnik distributions
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 325 (05):
  • [25] A generalization of the Weierstrass semigroup
    Beelen, Peter
    Tutas, Nesrin
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (02) : 243 - 260
  • [26] Non-symmetric perturbations of symmetric Dirichlet forms
    Fitzsimmons, PJ
    Kuwae, K
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (01) : 140 - 162
  • [27] Convergence of non-symmetric forms
    Hino, M
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1998, 38 (02): : 329 - 341
  • [28] NON-SYMMETRIC STOLARSKY MEANS
    Butt, Saad Ihsan
    Pecaric, Josip
    Rehman, Atiq ur
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (02): : 227 - 237
  • [29] NON-SYMMETRIC RESISTANCE FORMS
    Boboc, Nicu
    Bucur, Gheorghe
    POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, 2009, : 65 - 84
  • [30] Non-symmetric lexicographic configurations
    Hering, Christoph
    Krebs, Andreas
    Edgar, Thomas
    GROUP THEORY, COMBINATORICS, AND COMPUTING, 2014, 611 : 49 - +