The Riemann constant for a non-symmetric Weierstrass semigroup

被引:0
|
作者
Jiryo Komeda
Shigeki Matsutani
Emma Previato
机构
[1] Kanagawa Institute of Technology,Department of Mathematics, Center for Basic Education and Integrated Learning
[2] National Institute of Technology,Industrial Mathematics
[3] Sasebo College,Department of Mathematics and Statistics
[4] Boston University,undefined
来源
Archiv der Mathematik | 2016年 / 107卷
关键词
Riemann constant; Non-symmetric Weierstrass semigroup; Theta function; Abel map; Sigma function; Primary 14H55; Secondary 14H50; 14K25; 14H40;
D O I
暂无
中图分类号
学科分类号
摘要
The zero divisor of the theta function of a compact Riemann surface X of genus g is the canonical theta divisor of Pic(g-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${^{(g-1)}}$$\end{document} up to translation by the Riemann constant Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} for a base point P of X. The complement of the Weierstrass gaps at the base point P gives a numerical semigroup, called the Weierstrass semigroup. It is classically known that the Riemann constant Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} is a half period, namely an element of 12Γτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2} \Gamma_\tau}$$\end{document} , for the Jacobi variety J(X)=Cg/Γτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{J}(X)=\mathbb{C}^{g}/\Gamma_\tau}$$\end{document} of X if and only if the Weierstrass semigroup at P is symmetric. In this article, we analyze the non-symmetric case. Using a semi-canonical divisor D0, we express the relation between the Riemann constant Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta}$$\end{document} and a half period in the non-symmetric case. We point out an application to an algebraic expression for the Jacobi inversion problem. We also identify the semi-canonical divisor D0 for trigonal pointed curves, namely with total ramification at P.
引用
收藏
页码:499 / 509
页数:10
相关论文
共 50 条
  • [1] The Riemann constant for a non-symmetric Weierstrass semigroup
    Komeda, Jiryo
    Matsutani, Shigeki
    Previato, Emma
    ARCHIV DER MATHEMATIK, 2016, 107 (05) : 499 - 509
  • [2] Riesz transforms for a non-symmetric Ornstein-Uhlenbeck semigroup
    Mauceri, Giancarlo
    Noselli, Luana
    SEMIGROUP FORUM, 2008, 77 (03) : 380 - 398
  • [3] Riesz transforms for a non-symmetric Ornstein-Uhlenbeck semigroup
    Giancarlo Mauceri
    Luana Noselli
    Semigroup Forum, 2008, 77 : 380 - 398
  • [4] On the isotropic constant of non-symmetric convex bodies
    Dar, S
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 97 (1) : 151 - 156
  • [5] On the isotropic constant of non-symmetric convex bodies
    S. Dar
    Israel Journal of Mathematics, 1997, 97 : 151 - 156
  • [6] Positioning symmetric and non-symmetric parts using radial and constant force fields
    Lamiraux, F
    Kavraki, LE
    ALGORITHMIC AND COMPUTATIONAL ROBOTICS: NEW DIRECTIONS, 2001, : 37 - 49
  • [7] Symmetric and non-symmetric saturation
    Motyka, L.
    ACTA PHYSICA POLONICA B, 2006, 37 (12): : 3533 - 3551
  • [8] NON-SYMMETRIC INTRINSIC HOPF-LAX SEMIGROUP VS. INTRINSIC LAGRANGIAN
    Di Donato, Daniela
    arXiv, 2022,
  • [9] Planar Time Optimal Paths for Non-Symmetric Vehicles in Constant Flows
    Hammoud, Bilal
    Shammas, Elie
    ROBOTICS: SCIENCE AND SYSTEMS XII, 2016,
  • [10] NON-SYMMETRIC FUNCTION
    NIJENHUIS, A
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (05): : 388 - 388