Locally D-optimal designs for heteroscedastic polynomial measurement error models

被引:0
|
作者
Min-Jue Zhang
Rong-Xian Yue
机构
[1] Shanghai Normal University,Department of Mathematics
来源
Metrika | 2020年 / 83卷
关键词
Measurement error model; Heteroscedasticity; Corrected score function approach; Chebycheff system; Local ; -optimality;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers constructions of optimal designs for heteroscedastic polynomial measurement error models. Corresponding approximate design theory is developed by using corrected score function approach, which leads to non-concave optimisation problems. For the weighted polynomial measurement error model of degree p with some commonly used heteroscedastic structures, the upper bounds for the number of support points of locally D-optimal designs can be determined explicitly. A numerical example is given to show how heteroscedastic structures affect the optimal designs.
引用
收藏
页码:643 / 656
页数:13
相关论文
共 50 条