Locally D-optimal designs for heteroscedastic polynomial measurement error models

被引:0
|
作者
Min-Jue Zhang
Rong-Xian Yue
机构
[1] Shanghai Normal University,Department of Mathematics
来源
Metrika | 2020年 / 83卷
关键词
Measurement error model; Heteroscedasticity; Corrected score function approach; Chebycheff system; Local ; -optimality;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers constructions of optimal designs for heteroscedastic polynomial measurement error models. Corresponding approximate design theory is developed by using corrected score function approach, which leads to non-concave optimisation problems. For the weighted polynomial measurement error model of degree p with some commonly used heteroscedastic structures, the upper bounds for the number of support points of locally D-optimal designs can be determined explicitly. A numerical example is given to show how heteroscedastic structures affect the optimal designs.
引用
下载
收藏
页码:643 / 656
页数:13
相关论文
共 50 条
  • [31] Rejoinder: A general approach to D-optimal designs for weighted univariate polynomial regression models
    Dette, Holger
    Trampisch, Matthias
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (01) : 39 - 42
  • [32] Discussion: A general approach to D-optimal designs for weighted univariate polynomial regression models
    Mong-Na Lo Huang
    Chuan-Pin Lee
    Journal of the Korean Statistical Society, 2010, 39 : 31 - 33
  • [33] D-Optimal designs for quadratic regression models
    van Berkum, EEM
    Pauwels, B
    Upperman, PM
    ADVANCES IN STOCHASTIC SIMULATION METHODS, 2000, : 189 - 195
  • [34] D-OPTIMAL DESIGNS FOR POISSON REGRESSION MODELS
    Russell, K. G.
    Woods, D. C.
    Lewis, S. M.
    Eccleston, J. A.
    STATISTICA SINICA, 2009, 19 (02) : 721 - 730
  • [35] D-OPTIMAL DESIGNS FOR MULTINOMIAL LOGISTIC MODELS
    Bu, Xianwei
    Majumdar, Dibyen
    Yang, Jie
    ANNALS OF STATISTICS, 2020, 48 (02): : 983 - 1000
  • [36] D-optimal designs for polynomial regression with exponential weight function
    Fu-Chuen Chang
    Hsiu-Ching Chang
    Sheng-Shian Wang
    Metrika, 2009, 70 : 339 - 354
  • [37] Exact D-optimal designs for weighted polynomial regression model
    Chen, RB
    Huang, MNL
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 33 (02) : 137 - 149
  • [38] Exact D-optimal designs for polynomial regression without intercept
    Chang, FC
    STATISTICS & PROBABILITY LETTERS, 1999, 44 (02) : 131 - 136
  • [39] D-Optimal designs for weighted polynomial regression—A functional approach
    Fu-Chuen Chang
    Annals of the Institute of Statistical Mathematics, 2005, 57 : 833 - 844
  • [40] D-Optimal designs for weighted polynomial regression -: A functional approach
    Chang, FC
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2005, 57 (04) : 833 - 844