Locally D-optimal designs for multistage models and heteroscedastic polynomial regression models

被引:3
|
作者
Fang, Zhide [1 ]
Wiens, Douglas P.
Wu, Zheyang
机构
[1] Univ New Orleans, Dept Math, New Orleans, LA 70148 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2M7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bioassay; D-optimality; dose response; optimal design;
D O I
10.1016/j.jspi.2004.11.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the construction of locally D-optimal designs for a nonlinear, multistage model in which one observes a binary response variable with expected value P(x; theta) = H(theta(0) + theta(1)x + - - - + theta(k)x(k)). Here H is any twice differentiable distribution function. Our results apply as well to heteroscedastic polynomial regression models, under mild conditions on the efficiency function. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:4059 / 4070
页数:12
相关论文
共 50 条
  • [1] Locally D-optimal designs for heteroscedastic polynomial measurement error models
    Min-Jue Zhang
    Rong-Xian Yue
    [J]. Metrika, 2020, 83 : 643 - 656
  • [2] Locally D-optimal designs for exponential regression models
    Dette, Holger
    Melas, Viatcheslav B.
    Wong, Weng Kee
    [J]. STATISTICA SINICA, 2006, 16 (03) : 789 - 803
  • [3] D-optimal designs for polynomial regression models through origin
    Fang, Z
    [J]. STATISTICS & PROBABILITY LETTERS, 2002, 57 (04) : 343 - 351
  • [4] Bayesian D-optimal designs on a fixed number of design points for heteroscedastic polynomial models
    Dette, H
    Wong, WK
    [J]. BIOMETRIKA, 1998, 85 (04) : 869 - 882
  • [5] ON THE EQUIVALENCE OF D-OPTIMAL AND G-OPTIMAL DESIGNS IN HETEROSCEDASTIC MODELS
    WONG, WK
    [J]. STATISTICS & PROBABILITY LETTERS, 1995, 25 (04) : 317 - 321
  • [6] D-Optimal Designs for Hierarchical Linear Models with Heteroscedastic Errors
    Xin Liu
    Rong-Xian Yue
    Kashinath Chatterjee
    [J]. Communications in Mathematics and Statistics, 2022, 10 : 669 - 679
  • [7] D-Optimal Designs for Hierarchical Linear Models with Heteroscedastic Errors
    Liu, Xin
    Yue, Rong-Xian
    Chatterjee, Kashinath
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (04) : 669 - 679
  • [8] D-optimal designs for Poisson regression models
    Wang, Yanping
    Myers, Raymond H.
    Smith, Eric. P.
    Ye, Keying
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (08) : 2831 - 2845
  • [9] D-Optimal designs for quadratic regression models
    van Berkum, EEM
    Pauwels, B
    Upperman, PM
    [J]. ADVANCES IN STOCHASTIC SIMULATION METHODS, 2000, : 189 - 195
  • [10] D-OPTIMAL DESIGNS FOR POISSON REGRESSION MODELS
    Russell, K. G.
    Woods, D. C.
    Lewis, S. M.
    Eccleston, J. A.
    [J]. STATISTICA SINICA, 2009, 19 (02) : 721 - 730