Congruence-simple multiplicatively idempotent semirings

被引:0
|
作者
Tomáš Kepka
Miroslav Korbelář
Günter Landsmann
机构
[1] Charles University,Department of Algebra, Faculty of Mathematics and Physics
[2] Czech Technical University in Prague,Department of Mathematics,Faculty of Electrical Engineering
[3] Johannes Kepler University,Research Institute for Symbolic Computation
来源
Algebra universalis | 2023年 / 84卷
关键词
Congruence; Simple; Semiring; Multiplicatively idempotent; Multiplicatively absorbing; 06A12; 16Y60;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be a multiplicatively idempotent congruence-simple semiring. We show that |S|=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=2$$\end{document} if S has a multiplicatively absorbing element. We also prove that if S is finite then either |S|=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=2$$\end{document} or S≅End(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\cong {{\,\textrm{End}\,}}(L)$$\end{document} or Sop≅End(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{op}\cong {{\,\textrm{End}\,}}(L)$$\end{document} where L is the 2-element semilattice. It seems to be an open question, whether S can be infinite at all.
引用
收藏
相关论文
共 50 条
  • [21] ON ADDITIVELY OR MULTIPLICATIVELY IDEMPOTENT SEMIRINGS AND PARTIAL ORDERS
    HEBISCH, U
    VANLEEUWEN, LCA
    [J]. LECTURE NOTES IN MATHEMATICS, 1988, 1320 : 154 - 161
  • [22] Multiplicatively Idempotent Semirings in which All Congruences Are Ideal
    Vechtomov, E. M.
    Petrov, A. A.
    [J]. MATHEMATICAL NOTES, 2022, 112 (3-4) : 382 - 387
  • [23] Multiplicatively Idempotent Semirings in which All Congruences Are Ideal
    E. M. Vechtomov
    A. A. Petrov
    [J]. Mathematical Notes, 2022, 112 : 382 - 387
  • [24] Pseudocomplements in the Lattice of Subvarieties of a Variety of Multiplicatively Idempotent Semirings
    Vechtomov E.M.
    Petrov A.A.
    [J]. Journal of Mathematical Sciences, 2019, 237 (3) : 410 - 419
  • [25] Congruence-simple subsemirings of ℚ+
    Vítězslav Kala
    Miroslav Korbelář
    [J]. Semigroup Forum, 2010, 81 : 286 - 296
  • [26] Simple semirings with right multiplicatively absorbing elements
    Batikova, Barbora
    Kepka, Tomas
    Nemec, Petr
    [J]. SEMIGROUP FORUM, 2020, 101 (01) : 37 - 50
  • [27] Congruence-simple subsemirings of Q+
    Kala, Vitezslav
    Korbelar, Miroslav
    [J]. SEMIGROUP FORUM, 2010, 81 (02) : 286 - 296
  • [28] Simple semirings with left multiplicatively absorbing elements
    Kepka, Tomas
    Nemec, Petr
    [J]. SEMIGROUP FORUM, 2015, 91 (01) : 159 - 170
  • [29] Simple semirings with left multiplicatively absorbing elements
    Tomáš Kepka
    Petr Němec
    [J]. Semigroup Forum, 2015, 91 : 159 - 170
  • [30] Simple semirings with right multiplicatively absorbing elements
    Barbora Batíková
    Tomáš Kepka
    Petr Němec
    [J]. Semigroup Forum, 2020, 101 : 37 - 50