Multiplicatively Idempotent Semirings in which All Congruences Are Ideal

被引:1
|
作者
Vechtomov, E. M. [1 ]
Petrov, A. A. [1 ]
机构
[1] Vyatka State Univ, Kirov 610000, Russia
关键词
semiring; multiplicatively idempotent semiring; ideal congruence; Boolean ring; generalized Boolean lattice;
D O I
10.1134/S0001434622090061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The study of multiplicatively idempotent semirings with additional conditions is continued. It is proved that every multiplicatively idempotent semiring with ideal congruences is isomorphic to the direct product of a Boolean ring and a generalized Boolean lattice. Thus, a new abstract characterization is obtained for the direct products of Boolean rings and generalized Boolean lattices. Examples are given.
引用
收藏
页码:382 / 387
页数:6
相关论文
共 50 条
  • [1] Multiplicatively Idempotent Semirings in which All Congruences Are Ideal
    E. M. Vechtomov
    A. A. Petrov
    [J]. Mathematical Notes, 2022, 112 : 382 - 387
  • [2] Multiplicatively Idempotent Semirings
    Vechtomov E.M.
    Petrov A.A.
    [J]. Journal of Mathematical Sciences, 2015, 206 (6) : 634 - 653
  • [3] MULTIPLICATIVELY IDEMPOTENT SEMIRINGS
    Chajda, Ivan
    Laenger, Helmut
    Svrcek, Filip
    [J]. MATHEMATICA BOHEMICA, 2015, 140 (01): : 35 - 42
  • [4] Multiplicatively Idempotent Semirings with Annihilator Condition
    E. M. Vechtomov
    A. A. Petrov
    [J]. Russian Mathematics, 2023, 67 : 23 - 31
  • [5] On a variety of commutative multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    [J]. SEMIGROUP FORUM, 2017, 94 (03) : 610 - 617
  • [6] Multiplicatively Idempotent Semirings with Annihilator Condition
    Vechtomov, E. M.
    Petrov, A. A.
    [J]. RUSSIAN MATHEMATICS, 2023, 67 (03) : 23 - 31
  • [7] On a variety of commutative multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    [J]. Semigroup Forum, 2017, 94 : 610 - 617
  • [8] The variety of commutative additively and multiplicatively idempotent semirings
    Ivan Chajda
    Helmut Länger
    [J]. Semigroup Forum, 2018, 96 : 409 - 415
  • [9] Congruence-simple multiplicatively idempotent semirings
    Tomáš Kepka
    Miroslav Korbelář
    Günter Landsmann
    [J]. Algebra universalis, 2023, 84
  • [10] The variety of commutative additively and multiplicatively idempotent semirings
    Chajda, Ivan
    Laenger, Helmut
    [J]. SEMIGROUP FORUM, 2018, 96 (02) : 409 - 415