Symbolic template iterations of complex quadratic maps

被引:0
|
作者
Anca Rǎdulescu
Ariel Pignatelli
机构
[1] State University of New York at New Paltz,Department of Mathematics
[2] SUNY New Paltz,Department of Mechanical Engineering
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Julia set; Non-autonomous iterations; Symbolic template; Connectedness; Hausdorff measure; Hybrid Mandelbrot set; Propagating error; Parameter sensitivity; DNA replication;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of orbits for iterated polynomials has been widely studied since the dawn of discrete dynamics as a research field, in particular in the context of the complex quadratic family f:C→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :\mathbb {C} \rightarrow \mathbb {C}$$\end{document}, parametrized as fc(z)=z2+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c(z) = z^2 + c$$\end{document}, with c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \in \mathbb {C}$$\end{document}. While more recent research has been studying the orbit behavior when the map changes along with the iterations, many aspects of non-autonomous discrete dynamics remain largely unexplored. Our work is focused on studying the behavior of pairs of quadratic maps (1) when iterated according to a rule prescribed by a binary template and (2) when the maps are organized as nodes in a network, and interact in a time-dependent fashion. We investigate how the traditional theory changes in these cases, illustrating in particular how the hardwired structure (the symbolic template, and respectively the adjacency graph) can affect dynamics (behavior of orbits, topology of Julia and Mandelbrot sets). Our current manuscript addresses the first topic, while the second topic is the subject of a subsequent paper. This is of potential interest to a variety of applications (including genetic and neural coding), since (1) it investigates how an occasional or a reoccurring error in a replication or learning algorithm may affect the outcome and (2) it relates to algorithms of synaptic restructuring and neural dynamics in brain networks.
引用
收藏
页码:2025 / 2042
页数:17
相关论文
共 50 条
  • [31] Factorization Method of Quadratic Template
    Kotyrba, Martin
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [32] Symbolic dynamics of tree maps
    Kitchens, Bruce
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (01) : 71 - 76
  • [33] Symbolic partition in chaotic maps
    Chai, Misha
    Lan, Yueheng
    CHAOS, 2021, 31 (03)
  • [34] Symbolic encoding in symplectic maps
    Christiansen, F
    Politi, A
    NONLINEARITY, 1996, 9 (06) : 1623 - 1640
  • [35] Symbolic dynamics for Lozi maps
    Misiurewicz, M.
    Stimac, S.
    NONLINEARITY, 2016, 29 (10) : 3031 - 3046
  • [36] Attractors in Pattern Iterations of Flat Top Tent Maps
    Silva, Luis
    MATHEMATICS, 2023, 11 (12)
  • [37] ITERATIONS OF DEPENDENT RANDOM MAPS AND EXOGENEITY IN NONLINEAR DYNAMICS
    Debaly, Zinsou Max
    Truquet, Lionel
    ECONOMETRIC THEORY, 2021, 37 (06) : 1135 - 1172
  • [38] Local Fixed Point Indices of Iterations of Planar Maps
    Graff, Grzegorz
    Nowak-Przygodzki, Piotr
    Ruiz del Portal, Francisco R.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2011, 23 (01) : 213 - 223
  • [39] Fractal distribution of reverse iterations in maps with chaotic dynamics
    Tomashevskiy, Alexey
    Kapranov, Michael
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (10): : 3669 - 3674
  • [40] Local Fixed Point Indices of Iterations of Planar Maps
    Grzegorz Graff
    Piotr Nowak-Przygodzki
    Francisco R. Ruiz del Portal
    Journal of Dynamics and Differential Equations, 2011, 23 : 213 - 223