Symbolic template iterations of complex quadratic maps

被引:0
|
作者
Anca Rǎdulescu
Ariel Pignatelli
机构
[1] State University of New York at New Paltz,Department of Mathematics
[2] SUNY New Paltz,Department of Mechanical Engineering
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Julia set; Non-autonomous iterations; Symbolic template; Connectedness; Hausdorff measure; Hybrid Mandelbrot set; Propagating error; Parameter sensitivity; DNA replication;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of orbits for iterated polynomials has been widely studied since the dawn of discrete dynamics as a research field, in particular in the context of the complex quadratic family f:C→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :\mathbb {C} \rightarrow \mathbb {C}$$\end{document}, parametrized as fc(z)=z2+c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_c(z) = z^2 + c$$\end{document}, with c∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \in \mathbb {C}$$\end{document}. While more recent research has been studying the orbit behavior when the map changes along with the iterations, many aspects of non-autonomous discrete dynamics remain largely unexplored. Our work is focused on studying the behavior of pairs of quadratic maps (1) when iterated according to a rule prescribed by a binary template and (2) when the maps are organized as nodes in a network, and interact in a time-dependent fashion. We investigate how the traditional theory changes in these cases, illustrating in particular how the hardwired structure (the symbolic template, and respectively the adjacency graph) can affect dynamics (behavior of orbits, topology of Julia and Mandelbrot sets). Our current manuscript addresses the first topic, while the second topic is the subject of a subsequent paper. This is of potential interest to a variety of applications (including genetic and neural coding), since (1) it investigates how an occasional or a reoccurring error in a replication or learning algorithm may affect the outcome and (2) it relates to algorithms of synaptic restructuring and neural dynamics in brain networks.
引用
收藏
页码:2025 / 2042
页数:17
相关论文
共 50 条
  • [11] Effects of local mutations in quadratic iterations
    Radulescu, Anca
    Longbotham, Abraham
    Collier, Ashelee
    CHAOS, 2025, 35 (01)
  • [12] Birational Quadratic Planar Maps with Generalized Complex Rational Representations
    Wang, Xuhui
    Han, Yuhao
    Ni, Qian
    Li, Rui
    Goldman, Ron
    MATHEMATICS, 2023, 11 (16)
  • [13] Constructing quadratic birational maps via their complex rational representation
    Wang, Xuhui
    Wu, Meng
    Liu, Yuan
    Ni, Qian
    COMPUTER AIDED GEOMETRIC DESIGN, 2021, 85
  • [14] EXPERIMENTAL RESULTS ON QUADRATIC MAPS USING GENERALIZED COMPLEX NUMBERS
    GIULI, G
    PISACANE, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (08): : 1311 - 1324
  • [15] ON STOCHASTIC PERTURBATIONS OF ITERATIONS OF CIRCLE MAPS
    KAIJSER, T
    PHYSICA D, 1993, 68 (02): : 201 - 231
  • [16] STUDIES OF ITERATIONS OF HOLOMORPHIC MAPS IN J-STAR-ALGEBRAS AND COMPLEX HILBERT-SPACES
    WLODARCZYK, K
    QUARTERLY JOURNAL OF MATHEMATICS, 1986, 37 (146): : 245 - 256
  • [17] MORPHOSIS OF THE JULIA SET OF THE REAL PARAMETER FAMILY OF COMPLEX QUADRATIC MAPS
    ENGEL, AB
    COMPUTERS & GRAPHICS, 1993, 17 (03) : 315 - 319
  • [18] ON A CLOSENESS OF THE JULIA SETS OF NOISE-PERTURBED COMPLEX QUADRATIC MAPS
    Andreadis, Ioannis
    Karakasidis, Theodoros E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (09):
  • [19] SOME REMARKS ON NUMERICAL ITERATIONS IN A SYMBOLIC MANIPULATION SYSTEM
    HENG, AK
    JOURNAL OF SYMBOLIC COMPUTATION, 1990, 10 (02) : 209 - 221
  • [20] Continuous iterations of dynamical maps: An axiomatic approach
    Barbaro, G
    CHAOS SOLITONS & FRACTALS, 2005, 26 (05) : 1355 - 1361