On subnormal subgroups of linear groups

被引:0
|
作者
S. Tazhetdinov
机构
[1] Berdakh Karakalpak State University,
来源
关键词
subnormal subgroup; congruence subgroup; general linear group; symplectic group; local ring; full ring; transvection;
D O I
暂无
中图分类号
学科分类号
摘要
We describe the subnormal subgroups of 2-dimensional linear groups over local and full rings in which 2 is invertible, as well as the subnormal subgroups of symplectic groups over local rings in which 2 is invertible.
引用
收藏
页码:175 / 179
页数:4
相关论文
共 50 条
  • [21] Groups in which Sylow subgroups and subnormal subgroups permute
    Ballester-Bolinches, A
    Beidleman, JC
    Heineken, H
    ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (1-2) : 63 - 69
  • [22] Finite groups with modular σ-subnormal subgroups
    Liu, A-Ming
    Chen, Mingzhu
    Safonova, Inna N.
    Skiba, Alexander N.
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 595 - 610
  • [24] Permutable subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Beidleman, J. C.
    Cossey, John
    Esteban-Romero, R.
    Ragland, M. F.
    Schmidt, Jack
    ARCHIV DER MATHEMATIK, 2009, 92 (06) : 549 - 557
  • [25] On Finite Groups with Pπ-Subnormal Subgroups
    Vasil'eva, T. I.
    Koranchuk, A. G.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 421 - 432
  • [26] Finite groups with subnormal Schmidt subgroups
    Vedernikov, V. A.
    ALGEBRA AND LOGIC, 2007, 46 (06) : 363 - 372
  • [27] Permutable subnormal subgroups of finite groups
    A. Ballester-Bolinches
    J. C. Beidleman
    John Cossey
    R. Esteban-Romero
    M. F. Ragland
    Jack Schmidt
    Archiv der Mathematik, 2009, 92 : 549 - 557
  • [28] Finite groups with abnormal and -subnormal subgroups
    Monakhov, V. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (02) : 352 - 363
  • [29] On generalised subnormal subgroups of finite groups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Tyutyanov, V. N.
    RICERCHE DI MATEMATICA, 2022, 71 (01) : 205 - 209
  • [30] Non-subnormal subgroups of groups
    Zarrin, Mohammad
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (05) : 851 - 853