Electrostatic nanolithography in polymers using atomic force microscopy

被引:0
|
作者
Sergei F. Lyuksyutov
Richard A. Vaia
Pavel B. Paramonov
Shane Juhl
Lynn Waterhouse
Robert M. Ralich
Grigori Sigalov
Erol Sancaktar
机构
[1] The University of Akron,Departments of Physics
[2] The University of Akron,Department of Polymer Engineering
[3] Materials and Manufacturing Directorate,undefined
[4] Air Force Research Laboratory,undefined
[5] Wright-Patterson Air Force Base,undefined
来源
Nature Materials | 2003年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The past decade has witnessed an explosion of techniques used to pattern polymers on the nano (1–100 nm) and submicrometre (100–1,000 nm) scale, driven by the extensive versatility of polymers for diverse applications, such as molecular electronics1,2, data storage3, optoelectronics4, displays5, sacrificial templates6,7 and all forms of sensors. Conceptually, most of the patterning techniques, including microcontact printing (soft lithography)8, photolithography9,10, electron-beam lithography11, block-copolymer templating12,13 and dip-pen lithography14, are based on the spatially selective removal or formation/deposition of polymer. Here, we demonstrate an alternative and novel lithography technique—electrostatic nanolithography using atomic force microscopy—that generates features by mass transport of polymer within an initially uniform, planar film without chemical crosslinking, substantial polymer degradation or ablation. The combination of localized softening of attolitres (102–105 nm3) of polymer by Joule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single-step process methodology using conventional atomic force microscopy (AFM) equipment, establishes a new paradigm for polymer nanolithography, allowing rapid (of the order of milliseconds) creation of raised (or depressed) features without external heating of a polymer film or AFM tip–film contact.
引用
收藏
页码:468 / 472
页数:4
相关论文
共 50 条
  • [1] Electrostatic nanolithography in polymers using atomic force microscopy
    Lyuksyutov, SF
    Vaia, RA
    Paramonov, PB
    Juhl, S
    Waterhouse, L
    Ralich, RM
    Sigalov, G
    Sancaktar, E
    [J]. NATURE MATERIALS, 2003, 2 (07) : 468 - 472
  • [2] Amplitude-modulated electrostatic nanolithography in polymers based on atomic force microscopy
    Lyuksyutov, SF
    Paramonov, PB
    Juhl, S
    Vaia, RA
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (21) : 4405 - 4407
  • [3] Nano-patterning in polymeric materials and biological objects using atomic force microscopy electrostatic nanolithography
    Lyuksyutov, SF
    [J]. CURRENT NANOSCIENCE, 2005, 1 (03) : 245 - 251
  • [4] Thermomechanical properties of polymer nanolithography using atomic force microscopy
    Fang, Te-Hua
    Wu, Cheng-Da
    Kang, Shao-Hui
    [J]. MICRON, 2011, 42 (05) : 492 - 497
  • [5] Nanolithography on thin layers of PMMA using atomic force microscopy
    Martín, C
    Rius, G
    Borrisé, X
    Pérez-Murano, F
    [J]. NANOTECHNOLOGY, 2005, 16 (08) : 1016 - 1022
  • [6] Atomic force microscopy electrostatic nanolithography (AFMEN): Manipulation of thin polymer films under extreme electrostatic potentials.
    Lyuksyutov, SF
    Juhl, SB
    Paramonov, PB
    Vaia, R
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1124 - U1124
  • [7] Tapping mode atomic force microscopy using electrostatic force modulation
    Hong, JW
    Khim, ZG
    Hou, AS
    Park, S
    [J]. APPLIED PHYSICS LETTERS, 1996, 69 (19) : 2831 - 2833
  • [8] Alignment control of liquid crystals using conductive atomic force microscopy nanolithography
    Lin, Tzu-Chieh
    Chao, Chih-Yu
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (06) : 4583 - 4585
  • [9] ELECTROSTATIC INTERACTION IN ATOMIC FORCE MICROSCOPY
    BUTT, HJ
    [J]. BIOPHYSICAL JOURNAL, 1991, 60 (04) : 777 - 785
  • [10] Electrostatic Discovery Atomic Force Microscopy
    Oinonen, Niko
    Xu, Chen
    Alldritt, Benjamin
    Canova, Filippo Federici
    Urtev, Fedor
    Cai, Shuning
    Krejci, Ondrej
    Kannala, Juho
    Liljeroth, Peter
    Foster, Adam S.
    [J]. ACS NANO, 2022, 16 (01) : 89 - 97