Electrostatic nanolithography in polymers using atomic force microscopy

被引:0
|
作者
Sergei F. Lyuksyutov
Richard A. Vaia
Pavel B. Paramonov
Shane Juhl
Lynn Waterhouse
Robert M. Ralich
Grigori Sigalov
Erol Sancaktar
机构
[1] The University of Akron,Departments of Physics
[2] The University of Akron,Department of Polymer Engineering
[3] Materials and Manufacturing Directorate,undefined
[4] Air Force Research Laboratory,undefined
[5] Wright-Patterson Air Force Base,undefined
来源
Nature Materials | 2003年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The past decade has witnessed an explosion of techniques used to pattern polymers on the nano (1–100 nm) and submicrometre (100–1,000 nm) scale, driven by the extensive versatility of polymers for diverse applications, such as molecular electronics1,2, data storage3, optoelectronics4, displays5, sacrificial templates6,7 and all forms of sensors. Conceptually, most of the patterning techniques, including microcontact printing (soft lithography)8, photolithography9,10, electron-beam lithography11, block-copolymer templating12,13 and dip-pen lithography14, are based on the spatially selective removal or formation/deposition of polymer. Here, we demonstrate an alternative and novel lithography technique—electrostatic nanolithography using atomic force microscopy—that generates features by mass transport of polymer within an initially uniform, planar film without chemical crosslinking, substantial polymer degradation or ablation. The combination of localized softening of attolitres (102–105 nm3) of polymer by Joule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single-step process methodology using conventional atomic force microscopy (AFM) equipment, establishes a new paradigm for polymer nanolithography, allowing rapid (of the order of milliseconds) creation of raised (or depressed) features without external heating of a polymer film or AFM tip–film contact.
引用
收藏
页码:468 / 472
页数:4
相关论文
共 50 条
  • [21] Comparative analysis on the nanoindentation of polymers using atomic force microscopy
    Jee, Ah-young
    Lee, Minyung
    [J]. POLYMER TESTING, 2010, 29 (01) : 95 - 99
  • [22] Induced nanoscale deformations in polymers using atomic force microscopy
    Lyuksyutov, SF
    Paramonov, PB
    Sharipov, RA
    Sigalov, G
    [J]. PHYSICAL REVIEW B, 2004, 70 (17): : 1 - 8
  • [23] Compositional mapping of bitumen using local electrostatic force interactions in atomic force microscopy
    Magonov, Sergei
    Alexander, John
    Surtchev, Marko
    Hung, Albert M.
    Fini, Elham H.
    [J]. JOURNAL OF MICROSCOPY, 2017, 265 (02) : 196 - 206
  • [24] Accurate Electrostatic Force Measurements by Atomic Force Microscopy Using Proper Distance Control
    Fukuzawa, Ryota
    Kobayashi, Daichi
    Takahashi, Takuji
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] Emerging techniques in atomic force microscopy: Diamond milling and electrostatic force microscopy
    Ippolito, Stephen
    Zumwalt, Sean
    Erickson, Andy
    [J]. Electronic Device Failure Analysis, 2015, 17 (03): : 4 - 10
  • [26] Variational treatment of electrostatic interaction force in atomic force microscopy
    E. Shmoylova
    A. Dorfmann
    S. Potapenko
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2008, 59 : 702 - 714
  • [27] The contribution of the electrostatic proximity force to atomic force microscopy with insulators
    Czarnecki, WS
    Schein, LB
    [J]. PHYSICS LETTERS A, 2005, 339 (1-2) : 145 - 151
  • [28] Variational treatment of electrostatic interaction force in atomic force microscopy
    Shmoylova, E.
    Dorfmann, A.
    Potapenko, S.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2008, 59 (04): : 702 - 714
  • [29] Atomic force microscopy as a nanolithography tool to investigate the DNA/gold interface
    Canepa, Paolo
    Rotondi, Silvia Maria Cristina
    Cavalleri, Ornella
    [J]. CURRENT OPINION IN ELECTROCHEMISTRY, 2024, 44
  • [30] Substrate Effect on Atomic Force Microscopy-Based Nanolithography of Graphene
    Tang, Xin
    Lai, King Wai Chiu
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2016, 15 (04) : 607 - 613