tt∗ geometry of modular curves

被引:0
|
作者
Riccardo Bergamin
机构
[1] SISSA,
关键词
Extended Supersymmetry; Field Theories in Lower Dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by Vafa’s model, we study the tt∗ geometry of a degenerate class of fractional quantum Hall effect (FQHE) models with an abelian group of symmetry acting transitively on the classical vacua. Despite it is not relevant for the phenomenology of the FQHE, this class of theories has interesting mathematical properties. We find that these models are parametrized by the family of modular curves Y1(N) = ℍ/Γ1(N), labelled by an integer N ≥ 2. Each point of the space of level N is in correspondence with a one dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Landau-Ginzburg theory, which is defined on an elliptic curve with N vacua and N poles in the fundamental cell. The modular curve Y (N) = ℍ/Γ(N) is a cover of degree N of Y1(N) and plays the role of spectral cover for the space of models. The presence of an abelian symmetry allows to diagonalize the Berry’s connection of the vacuum bundle and the tt∗ equations turn out to be the well known A^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{A} $$\end{document}N −1 Toda equations. The underlying structure of the modular curves and the connection between geometry and number theory emerge clearly when we study the modular properties and classify the critical limits of these models.
引用
下载
收藏
相关论文
共 50 条
  • [31] THE GEOMETRY OF ROLLING CURVES
    BLOOM, J
    WHITT, L
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (06): : 420 - 426
  • [32] On the geometry of bihyperelliptic curves
    Ballico, Edardo
    Casnati, Gianfranco
    Fontanari, Claudio
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (06) : 1339 - 1350
  • [33] ON THE INFINITESIMAL GEOMETRY OF CURVES
    WINTNER, A
    AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (02) : 241 - 259
  • [34] On Fractional Geometry of Curves
    Lazopoulos, Konstantinos A.
    Lazopoulos, Anastasios K.
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [35] Contact Geometry of Curves
    Vassiliou, Peter J.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [36] Twistor structures, tt*-geometry and singularity theory
    Hertling, Claus
    Sevenheck, Christian
    FROM HODGE THEORY TO INTEGRABILITY AND TQFT: TT*- GEOMETRY, 2008, 78 : 49 - +
  • [37] Fake congruence modular curves and subgroups of the modular group
    Berger, G
    JOURNAL OF ALGEBRA, 1999, 214 (01) : 276 - 300
  • [38] Realization of modular Galois representations in the Jacobians of modular curves
    Tian, Peng
    RAMANUJAN JOURNAL, 2022, 58 (02): : 389 - 405
  • [39] CATEGORICITY OF MODULAR AND SHIMURA CURVES
    Daw, Christopher
    Harris, Adam
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2017, 16 (05) : 1075 - 1101
  • [40] EQUATIONS OF BIELLIPTIC MODULAR CURVES
    Gonzalez, Josep
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2012, 27 (01): : 45 - 60