tt∗ geometry of modular curves

被引:0
|
作者
Riccardo Bergamin
机构
[1] SISSA,
关键词
Extended Supersymmetry; Field Theories in Lower Dimensions;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by Vafa’s model, we study the tt∗ geometry of a degenerate class of fractional quantum Hall effect (FQHE) models with an abelian group of symmetry acting transitively on the classical vacua. Despite it is not relevant for the phenomenology of the FQHE, this class of theories has interesting mathematical properties. We find that these models are parametrized by the family of modular curves Y1(N) = ℍ/Γ1(N), labelled by an integer N ≥ 2. Each point of the space of level N is in correspondence with a one dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 Landau-Ginzburg theory, which is defined on an elliptic curve with N vacua and N poles in the fundamental cell. The modular curve Y (N) = ℍ/Γ(N) is a cover of degree N of Y1(N) and plays the role of spectral cover for the space of models. The presence of an abelian symmetry allows to diagonalize the Berry’s connection of the vacuum bundle and the tt∗ equations turn out to be the well known A^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat{A} $$\end{document}N −1 Toda equations. The underlying structure of the modular curves and the connection between geometry and number theory emerge clearly when we study the modular properties and classify the critical limits of these models.
引用
收藏
相关论文
共 50 条
  • [21] Restriction of Siegel modular forms to modular curves
    Poor, C
    Yuen, DS
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (02) : 239 - 252
  • [22] MODULAR SURFACES AND MODULAR CURVES ON SYMMETRIC HILBERT MODULAR GROUPS
    HIRZEBRUCH, F
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1978, 11 (01): : 101 - 166
  • [23] Parametrizations of elliptic curves by Shimura curves and by classical modular curves
    Ribet, KA
    Takahashi, S
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (21) : 11110 - 11114
  • [24] Modular theory and geometry
    Schroer, B
    Wiesbrock, HW
    REVIEWS IN MATHEMATICAL PHYSICS, 2000, 12 (01) : 139 - 158
  • [25] The geometry of the modular bootstrap
    Chiang, Li-Yuan
    Huang, Tzu-Chen
    Huang, Yu-tin
    Li, Wei
    Rodina, Laurentiu
    Weng, He-Chen
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (02)
  • [26] MODULAR POINTS, MODULAR-CURVES, MODULAR SURFACES AND MODULAR-FORMS
    ZAGIER, D
    LECTURE NOTES IN PHYSICS, 1984, 1111 : 225 - 248
  • [27] Geometry of isophote curves
    Diatta, A
    Giblin, P
    SCALE SPACE AND PDE METHODS IN COMPUTER VISION, PROCEEDINGS, 2005, 3459 : 50 - 61
  • [28] Geometry on nodal curves
    Ran, Z
    COMPOSITIO MATHEMATICA, 2005, 141 (05) : 1191 - 1212
  • [29] GEOMETRY OF QUARTIC CURVES
    WALL, CTC
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 117 : 415 - 423
  • [30] Geometry of plane curves
    Dias, Fabio Scalco
    Mello, Luis Fernando
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (04): : 333 - 344