Compact conformal manifolds

被引:0
|
作者
Matthew Buican
Takahiro Nishinaka
机构
[1] Rutgers University,NHETC, Department of Physics and Astronomy
关键词
Supersymmetric gauge theory; Extended Supersymmetry; Renormalization Group;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we begin a systematic study of compact conformal manifolds of SCFTs in four dimensions (our notion of compactness is with respect to the topology induced by the Zamolodchikov metric). Supersymmetry guarantees that such manifolds are Kähler, and so the simplest possible non-trivial compact conformal manifold in this set of geometries is a complex one-dimensional projective space. We show that such a manifold is indeed realized and give a general prescription for constructing complex N-dimensional projective space conformal manifolds as certain small N=2→N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2\to \mathcal{N}=1 $$\end{document} breaking deformations of strongly interacting N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SCFTs. In many cases, our prescription reduces the construction of such spaces to a study of the N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} chiral ring. We also give an algorithm for constructing more general compact spaces of SCFTs.
引用
收藏
相关论文
共 50 条
  • [41] Anomalies, conformal manifolds, and spheres
    Jaume Gomis
    Po-Shen Hsin
    Zohar Komargodski
    Adam Schwimmer
    Nathan Seiberg
    Stefan Theisen
    Journal of High Energy Physics, 2016
  • [42] A nilpotency index of conformal manifolds
    Zohar Komargodski
    Shlomo S. Razamat
    Orr Sela
    Adar Sharon
    Journal of High Energy Physics, 2020
  • [43] CONFORMAL TRANSFORMATIONS OF REIMANNIAN MANIFOLDS
    OBATA, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 526 - &
  • [44] Conformal symmetries in warped manifolds
    Apostolopoulos, PS
    Carot, JG
    ELEVENTH CONFERENCE ON RECENT DEVELOPMENTS IN GRAVITY, 2005, 8 : 28 - 33
  • [45] CONFORMAL TRANSFORMATIONS OF EINSTEIN MANIFOLDS
    BARBANCE, C
    KERBRAT, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (08): : 391 - 394
  • [46] CONFORMAL DEFORMATION ON MANIFOLDS WITH BOUNDARY
    Chen, Szu-yu Sophie
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) : 1029 - 1064
  • [47] Anomalies, conformal manifolds, and spheres
    Gomis, Jaume
    Hsin, Po-Shen
    Komargodski, Zohar
    Schwimmer, Adam
    Seiberg, Nathan
    Theisen, Stefan
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [48] Conformal Deformation on Manifolds With Boundary
    Szu-yu Sophie Chen
    Geometric and Functional Analysis, 2009, 19 : 1029 - 1064
  • [49] Conformal manifolds with boundaries or defects
    Karch, Andreas
    Sato, Yoshiki
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [50] A nilpotency index of conformal manifolds
    Komargodski, Zohar
    Razamat, Shlomo S.
    Sela, Orr
    Sharon, Adar
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (10)