Anomalies, conformal manifolds, and spheres

被引:0
|
作者
Jaume Gomis
Po-Shen Hsin
Zohar Komargodski
Adam Schwimmer
Nathan Seiberg
Stefan Theisen
机构
[1] Perimeter Institute for Theoretical Physics,Department of Physics
[2] Princeton University,School of Natural Sciences
[3] Weizmann Institute of Science,Max
[4] Institute for Advanced Study,Planck
[5] Albert-Einstein-Institut,Institut für Gravitationsphysik
关键词
Supersymmetric gauge theory; Anomalies in Field and String Theories;
D O I
暂无
中图分类号
学科分类号
摘要
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{M}} $$\end{document} is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=2,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,\;2\right) $$\end{document} and N=0,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(0,\;2\right) $$\end{document} supersymmetric theories in d = 2 and N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=2,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,\;2\right) $$\end{document} theories in d = 2 and N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories in d = 4 we also show that the relation between the sphere partition function and the Kähler potential of ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{M}} $$\end{document} follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
引用
收藏
相关论文
共 50 条
  • [1] Anomalies, conformal manifolds, and spheres
    Gomis, Jaume
    Hsin, Po-Shen
    Komargodski, Zohar
    Schwimmer, Adam
    Seiberg, Nathan
    Theisen, Stefan
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [2] Covariantly constant anomalies on conformal manifolds
    Andriolo, Enrico
    Niarchos, Vasilis
    Papageorgakis, Constantinos
    Pomoni, Elli
    PHYSICAL REVIEW D, 2023, 107 (02)
  • [3] Effective action of conformal spins on spheres with multiplicative and conformal anomalies
    Dowker, J. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (22)
  • [4] Determinants and conformal anomalies of GJMS operators on spheres
    Dowker, J. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (11)
  • [5] Anomalies of duality groups and extended conformal manifolds
    Seiberg, Nathan
    Tachikawa, Yuji
    Yonekura, Kazuya
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (07):
  • [6] Weyl anomalies on conformal manifolds and moduli spaces
    Niarchos, Vasilis
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (01):
  • [7] Conformal field theories on deformed spheres, anomalies, and supersymmetry
    Minahan, Joseph A.
    Naseer, Usman
    Thull, Charles
    SCIPOST PHYSICS, 2021, 10 (03):
  • [8] Conformal anomalies for interacting scalar fields on curved manifolds with boundary
    Tsoupros, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (05): : 1027 - 1064
  • [9] Compact conformal manifolds
    Matthew Buican
    Takahiro Nishinaka
    Journal of High Energy Physics, 2015
  • [10] Compact conformal manifolds
    Buican, Matthew
    Nishinaka, Takahiro
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01):