Compact conformal manifolds

被引:0
|
作者
Matthew Buican
Takahiro Nishinaka
机构
[1] Rutgers University,NHETC, Department of Physics and Astronomy
关键词
Supersymmetric gauge theory; Extended Supersymmetry; Renormalization Group;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we begin a systematic study of compact conformal manifolds of SCFTs in four dimensions (our notion of compactness is with respect to the topology induced by the Zamolodchikov metric). Supersymmetry guarantees that such manifolds are Kähler, and so the simplest possible non-trivial compact conformal manifold in this set of geometries is a complex one-dimensional projective space. We show that such a manifold is indeed realized and give a general prescription for constructing complex N-dimensional projective space conformal manifolds as certain small N=2→N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2\to \mathcal{N}=1 $$\end{document} breaking deformations of strongly interacting N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} SCFTs. In many cases, our prescription reduces the construction of such spaces to a study of the N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} chiral ring. We also give an algorithm for constructing more general compact spaces of SCFTs.
引用
收藏
相关论文
共 50 条
  • [1] Compact conformal manifolds
    Buican, Matthew
    Nishinaka, Takahiro
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01):
  • [2] ON CONFORMAL MAPPINGS ONTO COMPACT EINSTEIN MANIFOLDS
    Hinterleitner, Irena
    Guseva, Nadezda
    Mikes, Josef
    PROCEEDINGS OF THE NINETEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2018, : 132 - 139
  • [4] INFINITESIMAL CONFORMAL TRANSFORMATIONS IN FINSLERIAN COMPACT MANIFOLDS
    AKBARZADEH, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (15): : 655 - 657
  • [5] Rigidity theorems on conformal class of compact manifolds with boundary
    Barbosa, Ezequiel
    Mirandola, Heudson.
    Vitorio, Feliciano
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) : 629 - 637
  • [6] ON CONFORMAL EQUIVALENCE OF COMPACT 2-DIMENSIONAL MANIFOLDS
    BERGER, MS
    JOURNAL OF MATHEMATICS AND MECHANICS, 1969, 19 (01): : 13 - &
  • [7] Einstein-Weyl structures on compact conformal manifolds
    Ivanov, S
    QUARTERLY JOURNAL OF MATHEMATICS, 1999, 50 (200): : 457 - 462
  • [8] The obstacle problem for conformal metrics on compact Riemannian manifolds
    Bao, Sijia
    Xing, Yuming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [9] Conformal product structures on compact Kähler manifolds
    Moroianu, Andrei
    Pilca, Mihaela
    ADVANCES IN MATHEMATICS, 2025, 467
  • [10] The obstacle problem for conformal metrics on compact Riemannian manifolds
    Sijia Bao
    Yuming Xing
    Journal of Inequalities and Applications, 2018