Anomalies, conformal manifolds, and spheres

被引:0
|
作者
Jaume Gomis
Po-Shen Hsin
Zohar Komargodski
Adam Schwimmer
Nathan Seiberg
Stefan Theisen
机构
[1] Perimeter Institute for Theoretical Physics,Department of Physics
[2] Princeton University,School of Natural Sciences
[3] Weizmann Institute of Science,Max
[4] Institute for Advanced Study,Planck
[5] Albert-Einstein-Institut,Institut für Gravitationsphysik
关键词
Supersymmetric gauge theory; Anomalies in Field and String Theories;
D O I
暂无
中图分类号
学科分类号
摘要
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{M}} $$\end{document} is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=2,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,\;2\right) $$\end{document} and N=0,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(0,\;2\right) $$\end{document} supersymmetric theories in d = 2 and N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=2,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=\left(2,\;2\right) $$\end{document} theories in d = 2 and N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} theories in d = 4 we also show that the relation between the sphere partition function and the Kähler potential of ℳ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{M}} $$\end{document} follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
引用
收藏
相关论文
共 50 条
  • [21] LOCALLY CONFORMAL KAHLER MANIFOLDS AND CONFORMAL SCALAR CURVATURE
    Kim, Jaeman
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 25 (02): : 245 - 249
  • [22] Conformal manifolds with boundaries or defects
    Andreas Karch
    Yoshiki Sato
    Journal of High Energy Physics, 2018
  • [23] ON CONFORMAL CORRESPONDENCE OF SURFACES AND MANIFOLDS
    SAMUEL, P
    AMERICAN JOURNAL OF MATHEMATICS, 1947, 69 (03) : 421 - 446
  • [24] Conformal connections on Lyra manifolds
    Hirica, I. E.
    Nicolescu, L.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 43 - 49
  • [25] A nilpotency index of conformal manifolds
    Zohar Komargodski
    Shlomo S. Razamat
    Orr Sela
    Adar Sharon
    Journal of High Energy Physics, 2020
  • [26] CONFORMAL TRANSFORMATIONS OF REIMANNIAN MANIFOLDS
    OBATA, M
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 526 - &
  • [27] Conformal symmetries in warped manifolds
    Apostolopoulos, PS
    Carot, JG
    ELEVENTH CONFERENCE ON RECENT DEVELOPMENTS IN GRAVITY, 2005, 8 : 28 - 33
  • [28] CONFORMAL TRANSFORMATIONS OF EINSTEIN MANIFOLDS
    BARBANCE, C
    KERBRAT, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (08): : 391 - 394
  • [29] CONFORMAL DEFORMATION ON MANIFOLDS WITH BOUNDARY
    Chen, Szu-yu Sophie
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) : 1029 - 1064
  • [30] Conformal Deformation on Manifolds With Boundary
    Szu-yu Sophie Chen
    Geometric and Functional Analysis, 2009, 19 : 1029 - 1064