Triviality and Rigidity of Almost Riemann Solitons

被引:1
|
作者
Ghosh, Amalendu [1 ]
机构
[1] Chandernagore Coll, Dept Math, Hooghly 712136, W Bengal, India
关键词
Almost Riemann soliton; Ricci almost soliton; conformally flat; Einstein manifold; RICCI; COMPACT;
D O I
10.1007/s00009-024-02620-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study some triviality and rigidity results of Riemann soliton. First, we derive some sufficient conditions for which an almost Riemann soliton is trivial. In particular, we prove that any compact almost Riemann soliton with constant scalar curvature has constant sectional curvature. Next, we prove some rigidity results for gradient Riemann solitons. Precisely, we prove that a non-trivial gradient Riemann soliton is locally isometric to a warped product (IxF,dt2+f(t)2gF)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( I \times F, \textrm{d}t<^>2 + f(t)<^>2g_{F})$$\end{document}, where backward difference sigma not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \sigma \ne 0$$\end{document}.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] On the Triviality of a Certain Kind of Shrinking Solitons
    Zhang, Zhuhong
    JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (02): : 169 - 177
  • [22] Almost Riemann Solitons with Vertical Potential on Conformal Cosymplectic Contact Complex Riemannian Manifolds
    Manev, Mancho
    SYMMETRY-BASEL, 2023, 15 (01):
  • [23] On Submanifolds as Riemann Solitons
    Adara M. Blaga
    Cihan Özgür
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [24] On Submanifolds as Riemann Solitons
    Blaga, Adara M.
    Ozgur, Cihan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)
  • [25] Triviality results for compact k-Yamabe solitons
    Tokura, Willian Isao
    Batista, Elismar Dias
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (02)
  • [26] A note on the triviality of gradient solitons of the Ricci–Bourguignon flow
    Antonio W. Cunha
    Antonio N. Silva Junior
    Eudes L. De Lima
    Henrique F. De Lima
    Archiv der Mathematik, 2023, 120 : 89 - 98
  • [27] Triviality results for quasi k-Yamabe solitons
    Tokura, Willian Isao
    Batista, Elismar Dias
    Kai, Priscila Marques
    Barboza, Marcelo Bezerra
    ARCHIV DER MATHEMATIK, 2022, 119 (06) : 623 - 638
  • [28] REMARKS ON ALMOST η-SOLITONS
    Blaga, Adara M.
    MATEMATICKI VESNIK, 2019, 71 (03): : 244 - 249
  • [29] Ricci almost solitons
    Pigola, Stefano
    Rigoli, Marco
    Rimoldi, Michele
    Setti, Alberto G.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (04) : 757 - 799
  • [30] On Bach almost solitons
    Amalendu Ghosh
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 45 - 54