Triviality and Rigidity of Almost Riemann Solitons

被引:1
|
作者
Ghosh, Amalendu [1 ]
机构
[1] Chandernagore Coll, Dept Math, Hooghly 712136, W Bengal, India
关键词
Almost Riemann soliton; Ricci almost soliton; conformally flat; Einstein manifold; RICCI; COMPACT;
D O I
10.1007/s00009-024-02620-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study some triviality and rigidity results of Riemann soliton. First, we derive some sufficient conditions for which an almost Riemann soliton is trivial. In particular, we prove that any compact almost Riemann soliton with constant scalar curvature has constant sectional curvature. Next, we prove some rigidity results for gradient Riemann solitons. Precisely, we prove that a non-trivial gradient Riemann soliton is locally isometric to a warped product (IxF,dt2+f(t)2gF)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( I \times F, \textrm{d}t<^>2 + f(t)<^>2g_{F})$$\end{document}, where backward difference sigma not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla \sigma \ne 0$$\end{document}.
引用
收藏
页数:22
相关论文
共 50 条