Real Hypersurfaces with Quadratic Killing Normal Jacobi Operator in the Real Grassmannians of Rank Two

被引:0
|
作者
Hyunjin Lee
Young Jin Suh
机构
[1] Kyungpook National University,The Research Institute of Real and Complex Manifolds (RIRCM)
[2] Kyungpook National University,Department of Mathematics and RIRCM
来源
Results in Mathematics | 2021年 / 76卷
关键词
(Quadratic) Killing normal Jacobi operator; cyclic parallel normal Jacobi operator; -isotropic; -principal; real hypersurfaces; real Grassmannians of rank two; complex quadric; complex hyperbolic quadric; Primary 53C40; Secondary 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, first we introduce a new notion of (quadratic) Killing normal Jacobi operator (or cyclic parallel normal Jacobi operator) and its geometric meaning for real hypersurfaces in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}, ε=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =\pm 1$$\end{document}, where Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document} denotes the complex quadric Qm(ε)=Qm=SOm+2/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Q^{m}(\varepsilon )=Q^{m}=SO_{m+2}/SO_{m}SO_{2}$$\end{document} for ε=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =1$$\end{document} and Qm(ε)=Qm∗=SOm,20/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )= Q^{m*}=SO_{m,2}^{0}/SO_{m}SO_{2}$$\end{document} for ε=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =-1$$\end{document}, respectively. Next, we give a non-existence theorem for Hopf real hypersurfaces satisfying quadratic Killing normal Jacobi operator in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting restricted normal Jacobi operators
    Doo Hyun Hwang
    Eunmi Pak
    Changhwa Woo
    Czechoslovak Mathematical Journal, 2017, 67 : 989 - 1004
  • [42] REAL HYPERSURFACES IN COMPLEX HYPERBOLIC TWO-PLANE GRASSMANNIANS WITH COMMUTING RESTRICTED NORMAL JACOBI OPERATORS
    Hwang, Doo Hyun
    Pak, Eunmi
    Woo, Changhwa
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (04) : 989 - 1004
  • [43] Real Hypersurfaces in Complex Two-Plane Grassmannians with GTW Reeb Lie Derivative Structure Jacobi Operator
    Eunmi Pak
    Gyu Jong Kim
    Young Jin Suh
    Mediterranean Journal of Mathematics, 2016, 13 : 1263 - 1272
  • [44] Real Hypersurfaces in Complex Two-Plane Grassmannians with GTW Reeb Lie Derivative Structure Jacobi Operator
    Pak, Eunmi
    Kim, Gyu Jong
    Suh, Young Jin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) : 1263 - 1272
  • [45] REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH COMMUTING JACOBI OPERATORS
    Lee, Hyunjin
    Suh, Young Jin
    Woo, Changhwa
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (03): : 751 - 766
  • [46] New Conditions on Normal Jacobi Operator of Real Hypersurfaces in the Complex Quadric
    Perez, Juan de Dios
    Suh, Young Jin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 891 - 903
  • [47] Real Hypersurfaces in the Complex Hyperbolic Quadric with Parallel Normal Jacobi Operator
    Suh, Young Jin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (04)
  • [48] Real Hypersurfaces in the Complex Quadric with Normal Jacobi Operator of Codazzi Type
    Imsoon Jeong
    Gyu Jong Kim
    Young Jin Suh
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 945 - 964
  • [49] Real Hypersurfaces with Invariant Normal Jacobi Operator in the Complex Hyperbolic Quadric
    Jeong, Imsoon
    Kim, Gyu Jong
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (03): : 551 - 570
  • [50] New Conditions on Normal Jacobi Operator of Real Hypersurfaces in the Complex Quadric
    Juan de Dios Pérez
    Young Jin Suh
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 891 - 903