Real Hypersurfaces with Quadratic Killing Normal Jacobi Operator in the Real Grassmannians of Rank Two

被引:0
|
作者
Hyunjin Lee
Young Jin Suh
机构
[1] Kyungpook National University,The Research Institute of Real and Complex Manifolds (RIRCM)
[2] Kyungpook National University,Department of Mathematics and RIRCM
来源
Results in Mathematics | 2021年 / 76卷
关键词
(Quadratic) Killing normal Jacobi operator; cyclic parallel normal Jacobi operator; -isotropic; -principal; real hypersurfaces; real Grassmannians of rank two; complex quadric; complex hyperbolic quadric; Primary 53C40; Secondary 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, first we introduce a new notion of (quadratic) Killing normal Jacobi operator (or cyclic parallel normal Jacobi operator) and its geometric meaning for real hypersurfaces in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}, ε=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =\pm 1$$\end{document}, where Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document} denotes the complex quadric Qm(ε)=Qm=SOm+2/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Q^{m}(\varepsilon )=Q^{m}=SO_{m+2}/SO_{m}SO_{2}$$\end{document} for ε=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =1$$\end{document} and Qm(ε)=Qm∗=SOm,20/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )= Q^{m*}=SO_{m,2}^{0}/SO_{m}SO_{2}$$\end{document} for ε=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =-1$$\end{document}, respectively. Next, we give a non-existence theorem for Hopf real hypersurfaces satisfying quadratic Killing normal Jacobi operator in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH D⊥-PARALLEL STRUCTURE JACOBI OPERATOR
    Jeong, Imsoon
    Machado, Carlos J. G.
    De Dios Perez, Juan
    Suh, Young Jin
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (05) : 655 - 673
  • [32] Cyclic parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians
    Lee, Hyunjin
    Suh, Young Jin
    Woo, Changhwa
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (04) : 939 - 964
  • [33] D⊥-INVARIANT REAL HYPERSURFACES IN COMPLEX GRASSMANNIANS OF RANK TWO
    Lee, Ruenn-Huah
    Loo, Tee-How
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2020, 61 (02): : 197 - 207
  • [34] Some recurrent normal Jacobi operators on real hypersurfaces in complex two-plane Grassmannians
    Wang, Yaning
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 95 (3-4): : 307 - 319
  • [35] Real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator is of Codazzi type
    I. Jeong
    H. Lee
    Y. J. Suh
    Acta Mathematica Hungarica, 2009, 125 : 141 - 160
  • [36] Real hypersurfaces in complex two-plane Grassmannians whose structure Jacobi operator is of Codazzi type
    Jeong, I.
    Lee, H.
    Suh, Y. J.
    ACTA MATHEMATICA HUNGARICA, 2009, 125 (1-2) : 141 - 160
  • [37] REAL HYPERSURFACES WITH KILLING STRUCTURE JACOBI OPERATOR IN THE COMPLEX HYPERBOLIC QUADRIC
    Suh, Young Jin
    OSAKA JOURNAL OF MATHEMATICS, 2021, 58 (01) : 1 - 28
  • [38] Real hypersurfaces in the complex quadric with parallel normal Jacobi operator
    Suh, Young Jin
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (2-3) : 442 - 451
  • [39] Real hypersurfaces with recurrent normal Jacobi operator in the complex quadric
    Lee, Hyunjin
    Suh, Young Jin
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 : 463 - 474
  • [40] Derivatives of normal Jacobi operator on real hypersurfaces in the complex quadric
    Lee, Hyunjin
    Perez, Juan de Dios
    Suh, Young Jin
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (06) : 1122 - 1133