Real Hypersurfaces with Quadratic Killing Normal Jacobi Operator in the Real Grassmannians of Rank Two

被引:0
|
作者
Hyunjin Lee
Young Jin Suh
机构
[1] Kyungpook National University,The Research Institute of Real and Complex Manifolds (RIRCM)
[2] Kyungpook National University,Department of Mathematics and RIRCM
来源
Results in Mathematics | 2021年 / 76卷
关键词
(Quadratic) Killing normal Jacobi operator; cyclic parallel normal Jacobi operator; -isotropic; -principal; real hypersurfaces; real Grassmannians of rank two; complex quadric; complex hyperbolic quadric; Primary 53C40; Secondary 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, first we introduce a new notion of (quadratic) Killing normal Jacobi operator (or cyclic parallel normal Jacobi operator) and its geometric meaning for real hypersurfaces in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}, ε=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =\pm 1$$\end{document}, where Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document} denotes the complex quadric Qm(ε)=Qm=SOm+2/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Q^{m}(\varepsilon )=Q^{m}=SO_{m+2}/SO_{m}SO_{2}$$\end{document} for ε=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =1$$\end{document} and Qm(ε)=Qm∗=SOm,20/SOmSO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )= Q^{m*}=SO_{m,2}^{0}/SO_{m}SO_{2}$$\end{document} for ε=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon =-1$$\end{document}, respectively. Next, we give a non-existence theorem for Hopf real hypersurfaces satisfying quadratic Killing normal Jacobi operator in the real Grassmannians of rank two Qm(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}^{m}(\varepsilon )$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Real Hypersurfaces with Quadratic Killing Normal Jacobi Operator in the Real Grassmannians of Rank Two
    Lee, Hyunjin
    Suh, Young Jin
    RESULTS IN MATHEMATICS, 2021, 76 (03)
  • [2] Quadratic Killing normal Jacobi operator for real hypersurfaces in complex Grassmannians of rank 2
    Lee, Hyunjin
    Woo, Changhwa
    Suh, Young Jin
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [3] QUADRATIC KILLING NORMAL JACOBI OPERATOR FOR REAL HYPERSURFACES IN THE COMPLEX QUADRIC
    Lee, Hyunjin
    Suh, Young Jin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (04) : 1281 - 1297
  • [4] Derivatives of structure Jacobi operator on real hypersurfaces in complex Grassmannians of rank two
    Kim, Gyu Jong
    Lee, Hyunjin
    Pak, Eunmi
    HOKKAIDO MATHEMATICAL JOURNAL, 2024, 53 (02) : 247 - 283
  • [5] Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator
    J. de dios Pérez
    I. Jeong
    Y. J. Suh
    Acta Mathematica Hungarica, 2007, 117 : 201 - 217
  • [6] Parallelism of normal Jacobi operator for real hypersurfaces in complex two-plane Grassmannians
    Jeong, Imsoon
    Suh, Young Jin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (3-4): : 307 - 317
  • [7] Real hypersurfaces in complex two-plane grassmannians with commuting normal jacobi operator
    Perez, J. De Dios
    Jeong, I.
    Suh, Y. J.
    ACTA MATHEMATICA HUNGARICA, 2007, 117 (03) : 201 - 217
  • [8] Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator
    Jeong, Imsoon
    Kim, Hee Jin
    Suh, Young Jin
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 76 (1-2): : 203 - 218
  • [9] The normal Jacobi operator of real hypersurfaces in complex hyperbolic two-plane Grassmannians
    Panagiotidou, Konstantina
    De Dios Perez, Juan
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (09)
  • [10] REAL HYPERSURFACES IN COMPLEX GRASSMANNIANS OF RANK TWO WITH SEMI-PARALLEL STRUCTURE JACOBI OPERATOR
    De, Avik
    Loo, Tee-How
    Woo, Changhwa
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 505 - 515