Techno-economic assessment of an integrated biomass gasification, electrolysis, and syngas biomethanation process

被引:0
|
作者
Lorenzo Menin
Stergios Vakalis
Vittoria Benedetti
Francesco Patuzzi
Marco Baratieri
机构
[1] Free University of Bolzano,Faculty of Science and Technology
[2] University of the Aegean,School of Environment, Department of Environment
来源
关键词
Biomethanation; Power-to-gas; Hydrogen; SNG; Steam gasification; Techno-economic assessment;
D O I
暂无
中图分类号
学科分类号
摘要
Biological methanation (biomethanation) of biomass-derived syngas can be a promising alternative to catalytic methanation, due to its milder operating conditions, and could improve the feasibility of power-to-gas and syngas upgrading systems. However, the feasibility of integrating syngas biomethanation with other processes, i.e., electrolysis and gasification, has not been thoroughly assessed so far by the existing literature. In this study, we carried out the techno-economic analysis of such integrated system and we compared it with the production of pure hydrogen. The results indicate that the two processes could produce 0.39 Nm3 of bio-derived substitute natural gas (bSNG) or 0.07 kg of bio-hydrogen (bH2) per kg of dry biomass, respectively. The process cold gas efficiency associated with the produced bSNG is estimated at 50.6%, with a 97.4% input hydrogen utilization efficiency. For bH2, the cold gas efficiency is 36.6%, with 85% hydrogen utilization. Gasification and gas compression were identified as the unit operations with the highest energy demand in both processes. The minimum selling prices (MSP) of the two products were estimated at 2.68 €/Nm3 for bSNG and 15.35 €/kg for bH2. While delivery costs and a limited production capacity pose additional challenges to the development of bH2 production on decentralized gasification plants, bSNG production for grid injection could become a more feasible alternative under appropriate incentive schemes. Key optimization opportunities for such process rely on better heat integration, lower pressure operation, and the use of waste biomass as feedstock.
引用
收藏
页码:445 / 459
页数:14
相关论文
共 50 条
  • [1] Techno-economic assessment of an integrated biomass gasification, electrolysis, and syngas biomethanation process
    Menin, Lorenzo
    Vakalis, Stergios
    Benedetti, Vittoria
    Patuzzi, Francesco
    Baratieri, Marco
    BIOMASS CONVERSION AND BIOREFINERY, 2021, 11 (02) : 445 - 459
  • [2] Techno-economic modeling of an integrated biomethane-biomethanol production process via biomass gasification, electrolysis, biomethanation, and catalytic methanol synthesis
    Lorenzo Menin
    Vittoria Benedetti
    Francesco Patuzzi
    Marco Baratieri
    Biomass Conversion and Biorefinery, 2023, 13 : 977 - 998
  • [3] Techno-economic modeling of an integrated biomethane-biomethanol production process via biomass gasification, electrolysis, biomethanation, and catalytic methanol synthesis
    Menin, Lorenzo
    Benedetti, Vittoria
    Patuzzi, Francesco
    Baratieri, Marco
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (02) : 977 - 998
  • [4] A techno-economic assessment of biomethane and bioethanol production from crude glycerol through integrated hydrothermal gasification, syngas fermentation and biomethanation
    Okolie, Jude A.
    Tabat, Meshach E.
    Gunes, Burcu
    Epelle, Emmanuel, I
    Mukherjee, Alivia
    Nanda, Sonil
    Dalai, Ajay K.
    ENERGY CONVERSION AND MANAGEMENT-X, 2021, 12
  • [5] Techno-economic assessment of a solar-assisted biomass gasification process
    Seo, Su Been
    Go, Eun Sol
    Ling, Jester Lih Jie
    Lee, See Hoon
    RENEWABLE ENERGY, 2022, 193 : 23 - 31
  • [6] A techno-economic assessment of bioethanol production from switchgrass through biomass gasification and syngas fermentation
    Regis, Francesco
    Monteverde, Alessandro Hugo Antonio
    Fino, Debora
    ENERGY, 2023, 274
  • [7] An integrated techno-economic and environmental assessment for carbon capture in hydrogen production by biomass gasification
    Wu, Na
    Lan, Kai
    Yao, Yuan
    RESOURCES CONSERVATION AND RECYCLING, 2023, 188
  • [8] Techno-economic analysis of ammonia production via integrated biomass gasification
    Andersson, Jim
    Lundgren, Joakim
    APPLIED ENERGY, 2014, 130 : 484 - 490
  • [9] Biomass Gasification Integrated with Chemical Looping System for Hydrogen and Power. Coproduction Process - Thermodynamic and Techno-Economic Assessment
    Jiang, Peng
    Berrouk, Abdallah S.
    Dara, Satyadileep
    CHEMICAL ENGINEERING & TECHNOLOGY, 2019, 42 (05) : 1153 - 1168
  • [10] Techno-economic assessment of catalytic gasification of biomass powders for methanol production
    Carvalho, Lara
    Furusjo, Erik
    Kirtania, Kawnish
    Wetterlund, Elisabeth
    Lundgren, Joakim
    Anheden, Marie
    Wolf, Jens
    BIORESOURCE TECHNOLOGY, 2017, 237 : 167 - 177