An integrated techno-economic and environmental assessment for carbon capture in hydrogen production by biomass gasification

被引:39
|
作者
Wu, Na [1 ]
Lan, Kai [1 ]
Yao, Yuan [1 ]
机构
[1] Yale Univ, Ctr Ind Ecol, Yale Sch Environm, New Haven, CT 06514 USA
基金
美国国家科学基金会;
关键词
Carbon capture; Hydrogen; Biomass gasification; Techno-economic analysis; Life cycle assessment; BECCS; LIFE-CYCLE ASSESSMENT; STEAM GASIFICATION; PROCESS SIMULATION; SYNGAS PRODUCTION; CO2; BECCS; DESIGN; PERFORMANCE; MITIGATION; EFFICIENCY;
D O I
10.1016/j.resconrec.2022.106693
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bioenergy with carbon capture and storage (BECCS) is a potential solution addressing climate change andre-gional wildfires, and supporting circular economy. This study investigates the economic and environmental performance of a BECCS pathway implementing carbon capture (CC) in hydrogen production via gasifying forest residues in the American West, by developing a framework that integrates process simulations, techno-economic analysis (TEA), and life cycle assessment (LCA). The results show that forest residue-derived hydrogen is economically competitive ($1.52- 2.92/kg H2) compared with fossil-based hydrogen. Incorporating CC increases environmental impact due to additional energy and chemical consumption, which can be mitigated by the energy self-sufficiency design that reduces CC cost to $75/tonne of CO2 for a 2,000 dry short ton/day plant, or by using renewable energy such as solar and wind. Compared to electrolysis and fossil-based routes with CC, only BECCS can provide carbon-negative hydrogen and is more favorable regarding human health impact and near-term economics.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis
    Cormos, Calin-Cristian
    [J]. ENERGY, 2023, 270
  • [2] Carbon-negative hydrogen from biomass using gas switching integrated gasification: Techno-economic assessment
    Helf, Antonia
    Cloete, Schalk
    Keller, Florian
    Cloete, Jan Hendrik
    Zaabout, Abdelghafour
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2022, 270
  • [3] Techno-economic analysis of ammonia production via integrated biomass gasification
    Andersson, Jim
    Lundgren, Joakim
    [J]. APPLIED ENERGY, 2014, 130 : 484 - 490
  • [4] Hydrogen production from woody biomass gasification: a techno-economic analysis
    Gubin, Veronica
    Benedikt, Florian
    Thelen, Ferdinand
    Hammerschmid, Martin
    Popov, Tom
    Hofbauer, Hermann
    Mueller, Stefan
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2024, 18 (04): : 818 - 836
  • [5] Techno-economic assessment of catalytic gasification of biomass powders for methanol production
    Carvalho, Lara
    Furusjo, Erik
    Kirtania, Kawnish
    Wetterlund, Elisabeth
    Lundgren, Joakim
    Anheden, Marie
    Wolf, Jens
    [J]. BIORESOURCE TECHNOLOGY, 2017, 237 : 167 - 177
  • [6] Enabling a gasification and carbon capture economy in India: An integrated techno-economic analysis
    Mukherjee, Atanu
    Maity, Arunava
    Chatterjee, Saikat
    [J]. FUEL, 2020, 263
  • [7] Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer-Tropsch Synthesis Integrated to Sugarcane Biorefineries
    Bressanin, Jessica Marcon
    Klein, Bruno Colling
    Chagas, Mateus Ferreira
    Barbosa Watanabe, Marcos Djun
    Lobo de Mesquita Sampaio, Isabelle
    Bonomi, Antonio
    de Morais, Edvaldo Rodrigo
    Cavalett, Otavio
    [J]. ENERGIES, 2020, 13 (17)
  • [8] Techno-Economic Analysis of Hydrogen and Electricity Production by Biomass Calcium Looping Gasification
    Shaikh, Abdul Rahim
    Wang, Qinhui
    Han, Long
    Feng, Yi
    Sharif, Zohaib
    Li, Zhixin
    Cen, Jianmeng
    Kumar, Sunel
    [J]. SUSTAINABILITY, 2022, 14 (04)
  • [9] Techno-economic assessment of an integrated biomass gasification, electrolysis, and syngas biomethanation process
    Lorenzo Menin
    Stergios Vakalis
    Vittoria Benedetti
    Francesco Patuzzi
    Marco Baratieri
    [J]. Biomass Conversion and Biorefinery, 2021, 11 : 445 - 459
  • [10] Techno-economic assessment of an integrated biomass gasification, electrolysis, and syngas biomethanation process
    Menin, Lorenzo
    Vakalis, Stergios
    Benedetti, Vittoria
    Patuzzi, Francesco
    Baratieri, Marco
    [J]. BIOMASS CONVERSION AND BIOREFINERY, 2021, 11 (02) : 445 - 459