A techno-economic assessment of bioethanol production from switchgrass through biomass gasification and syngas fermentation

被引:9
|
作者
Regis, Francesco [1 ,2 ]
Monteverde, Alessandro Hugo Antonio [1 ]
Fino, Debora [1 ,2 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Fdn Ist Italiano Tecnol, Ctr Sustainable Future Technol, Via Livorno 60, I-10144 Turin, Italy
关键词
Bioethanol; Gasification; Syngas fermentation; Techno-economic analysis; Process simulation; Aspen plus; CLOSTRIDIUM-LJUNGDAHLII; ETHANOL-PRODUCTION; SIMULATION; CONVERSION; TECHNOLOGIES; AMMONIA; REMOVAL;
D O I
10.1016/j.energy.2023.127318
中图分类号
O414.1 [热力学];
学科分类号
摘要
The consumption of fossil fuels, which are not economically and environmentally sustainable, can be reduced by producing biofuels, such as bioethanol. This study presents a reproducible model of the ethanol production process developed with Aspen Plus (R) software. The work's goal is to enhance the amount of ethanol produced per tonne of biomass and, therefore, the carbon yield of the process. The main steps of the process are the gasification of the pretreated switchgrass, the cleaning of the syngas obtained, the fermentation of the syngas to ethanol and its purification. The parameters relating to gasification were set to produce syngas with an optimal composition for the fermenter. A discounted cash flow analysis was used to determine the minimum ethanol selling price for different plant scales and H2 prices. By enriching the syngas with green H2 and adopting an optimal bioreactor, a remarkable ethanol yield of 1015.04 L/t of switchgrass can be obtained. Considering a plant size of 750,000 t/y of switchgrass, the minimum ethanol selling price is 1.07 $/L for the base scenario and is further lowered to 0.77 $/L for the 2050 H2 scenario. The potential savings of building more plants were also assessed thanks to the learning effects.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A techno-economic assessment of biomethane and bioethanol production from crude glycerol through integrated hydrothermal gasification, syngas fermentation and biomethanation
    Okolie, Jude A.
    Tabat, Meshach E.
    Gunes, Burcu
    Epelle, Emmanuel, I
    Mukherjee, Alivia
    Nanda, Sonil
    Dalai, Ajay K.
    [J]. ENERGY CONVERSION AND MANAGEMENT-X, 2021, 12
  • [2] A Techno-economic Analysis of Polyhydroxyalkanoate and Hydrogen Production from Syngas Fermentation of Gasified Biomass
    Choi, DongWon
    Chipman, David C.
    Bents, Scott C.
    Brown, Robert C.
    [J]. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2010, 160 (04) : 1032 - 1046
  • [3] A Techno-economic Analysis of Polyhydroxyalkanoate and Hydrogen Production from Syngas Fermentation of Gasified Biomass
    DongWon Choi
    David C. Chipman
    Scott C. Bents
    Robert C. Brown
    [J]. Applied Biochemistry and Biotechnology, 2010, 160 : 1032 - 1046
  • [4] Techno-economic assessment of an integrated biomass gasification, electrolysis, and syngas biomethanation process
    Lorenzo Menin
    Stergios Vakalis
    Vittoria Benedetti
    Francesco Patuzzi
    Marco Baratieri
    [J]. Biomass Conversion and Biorefinery, 2021, 11 : 445 - 459
  • [5] Techno-economic assessment of an integrated biomass gasification, electrolysis, and syngas biomethanation process
    Menin, Lorenzo
    Vakalis, Stergios
    Benedetti, Vittoria
    Patuzzi, Francesco
    Baratieri, Marco
    [J]. BIOMASS CONVERSION AND BIOREFINERY, 2021, 11 (02) : 445 - 459
  • [6] Techno-economic assessment of catalytic gasification of biomass powders for methanol production
    Carvalho, Lara
    Furusjo, Erik
    Kirtania, Kawnish
    Wetterlund, Elisabeth
    Lundgren, Joakim
    Anheden, Marie
    Wolf, Jens
    [J]. BIORESOURCE TECHNOLOGY, 2017, 237 : 167 - 177
  • [7] A techno-economic review of biomass gasification for production of chemicals
    Wang, Shu-Wen
    Li, De-Xun
    Ruan, Wen-Biao
    Jin, Chen-Lin
    Farahani, Mohammad Reza
    [J]. ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2018, 13 (08) : 351 - 356
  • [8] Hydrogen production from woody biomass gasification: a techno-economic analysis
    Gubin, Veronica
    Benedikt, Florian
    Thelen, Ferdinand
    Hammerschmid, Martin
    Popov, Tom
    Hofbauer, Hermann
    Mueller, Stefan
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2024, 18 (04): : 818 - 836
  • [9] Bioethanol Production via Herbaceous and Agricultural Biomass Gasification Integrated with Syngas Fermentation
    Safarian, Sahar
    Unnthorsson, Runar
    Richter, Christiaan
    [J]. FERMENTATION-BASEL, 2021, 7 (03):
  • [10] Techno-economic evaluation of a combined biomass gasification-solid oxide fuel cell system for ethanol production via syngas fermentation
    Ma, Shuai
    Dong, Changqing
    Hu, Xiaoying
    Xue, Junjie
    Zhao, Ying
    Wang, Xiaoqiang
    [J]. FUEL, 2022, 324