Sharp metastability threshold for two-dimensional bootstrap percolation

被引:0
|
作者
Alexander E. Holroyd
机构
[1] Department of Mathematics,
[2] UC Berkeley,undefined
[3] CA 94720-3840. e-mail: holroyd@math.berkeley.edu,undefined
来源
关键词
Numerical Prediction; Percolation Model; Infinite Lattice; Bootstrap Percolation; Inactive Site;
D O I
暂无
中图分类号
学科分类号
摘要
 In the bootstrap percolation model, sites in an L by L square are initially independently declared active with probability p. At each time step, an inactive site becomes active if at least two of its four neighbours are active. We study the behaviour as p→0 and L→∞ simultaneously of the probability I(L,p) that the entire square is eventually active. We prove that I(L,p)→1 if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, and I(L,p)→0 if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where λ=π2/18. We prove the same behaviour, with the same threshold λ, for the probability J(L,p) that a site is active by time L in the process on the infinite lattice. The same results hold for the so-called modified bootstrap percolation model, but with threshold λ′=π2/6. The existence of the thresholds λ,λ′ settles a conjecture of Aizenman and Lebowitz [3], while the determination of their values corrects numerical predictions of Adler, Stauffer and Aharony [2].
引用
收藏
页码:195 / 224
页数:29
相关论文
共 50 条
  • [1] Sharp metastability threshold for two-dimensional bootstrap percolation
    Holroyd, AE
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (02) : 195 - 224
  • [2] Sharp metastability transition for two-dimensional bootstrap percolation with symmetric isotropic threshold rules
    Duminil-Copin, Hugo
    Hartarsky, Ivailo
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 190 (1-2) : 445 - 483
  • [3] SHARP METASTABILITY THRESHOLD FOR AN ANISOTROPIC BOOTSTRAP PERCOLATION MODEL
    Duminil-Copin, H.
    Van Enter, A. C. D.
    ANNALS OF PROBABILITY, 2013, 41 (3A): : 1218 - 1242
  • [4] Sharp threshold for two-dimensional majority dynamics percolation
    Alves, Caio
    Baldasso, Rangel
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 1869 - 1886
  • [5] MAXIMUM PERCOLATION TIME IN TWO-DIMENSIONAL BOOTSTRAP PERCOLATION
    Benevides, Fabricio
    Przykucki, Michal
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 224 - 251
  • [6] SHARP METASTABILITY THRESHOLD FOR AN ANISOTROPIC BOOTSTRAP PERCOLATION MODEL (vol 41, pg 1218, 2013)
    Duminil-Copin, Hugo
    van Enter, Aernout
    ANNALS OF PROBABILITY, 2016, 44 (02): : 1599 - 1599
  • [7] The metastability threshold for modified bootstrap percolation in d dimensions
    Holroyd, Alexander E.
    ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 : 418 - 433
  • [8] A Sharp Threshold for a Modified Bootstrap Percolation with Recovery
    Tom Coker
    Karen Gunderson
    Journal of Statistical Physics, 2014, 157 : 531 - 570
  • [9] A sharp threshold for bootstrap percolation in a random hypergraph
    Morrison, Natasha
    Noel, Jonathan A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [10] THE SHARP THRESHOLD FOR BOOTSTRAP PERCOLATION IN ALL DIMENSIONS
    Balogh, Jozsef
    Bollobas, Bela
    Duminil-Copin, Hugo
    Morris, Robert
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2667 - 2701