On the Sum of Generalized Frames in Hilbert Spaces

被引:0
|
作者
F. Abtahi
Z. Kamali
Z. Keyshams
机构
[1] University of Isfahan,Department of Pure Mathematis, Faculty of Mathematics and Statistics
[2] Islamic Azad University,Department of Mathematics, Isfahan (Khorasgan) Branch
来源
关键词
Controlled frame; frame; -frame; -; -frame; synthesis operator; Primary 42C15; Secondary 46C07;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} be a separable Hilbert space. It is known that the finite sum of Bessel sequences in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} is still a Bessel sequence. But the finite sum of generalized notions of frames does not necessarily remain stable in its initial form. In this paper, for a prescribed Bessel sequence F={fn}n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F=\{f_n\}_{n=1}^\infty $$\end{document}, we introduce and study KF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {KF}}$$\end{document}, the set consisting of all operators K∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in {\mathcal {B}}({\mathcal {H}})$$\end{document}, such that {fn}n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f_n\}_{n=1}^\infty $$\end{document} is a K-frame. We show that KF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {KF}}$$\end{document} is a right ideal of B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}({\mathcal {H}})$$\end{document}. We indicate by an example that KF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {KF}}$$\end{document} is not necessarily a left ideal. Moreover, we provide some sufficient conditions for the finite sum of K-frames to be a K-frame. We also use some examples to compare our results with existing ones. These examples demonstrate that our achievements do not depend on the available results. Furthermore, we study the same subject for K-g-frames and controlled frames and get some similar significant results.
引用
收藏
相关论文
共 50 条
  • [21] SURGERY OF FRAMES IN HILBERT SPACES
    Li, Dongwei
    Jiang, Jing
    OPERATORS AND MATRICES, 2022, 16 (01): : 75 - 85
  • [22] Hilbert–Schmidt Frames for Operators on Hilbert Spaces
    Farkhondeh Takhteh
    Morteza Mirzaee Azandaryani
    Iranian Journal of Science, 2023, 47 : 1679 - 1687
  • [23] Frames in Quaternionic Hilbert Spaces
    Sharma, Sumit Kumar
    Goel, Shashank
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2019, 15 (03) : 395 - 411
  • [24] CONTINUOUS FRAMES IN HILBERT SPACES
    Rahimi, A.
    Najati, A.
    Dehghan, Y. N.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2006, 12 (02): : 170 - 182
  • [25] ON GENERALIZED SPLIT SUM EQUILIBRIUM PROBLEMS AND HIERARCHICAL OPTIMIZATION PROBLEMS IN HILBERT SPACES
    Wen, Ching-Feng
    Naraghirad, Eskandar
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (01) : 57 - 73
  • [26] Hilbert-Schmidt Frames for Operators on Hilbert Spaces
    Takhteh, Farkhondeh
    Azandaryani, Morteza Mirzaee
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (5-6) : 1679 - 1687
  • [27] Relay fusion frames for Hilbert spaces
    Guoqing Hong
    Pengtong Li
    Journal of Inequalities and Applications, 2019
  • [28] Soft Frames in Soft Hilbert Spaces
    Ferrer, Osmin
    Sierra, Arley
    Sanabria, Jose
    MATHEMATICS, 2021, 9 (18)
  • [29] Oblique dual frames in Hilbert spaces
    Javanshiri, Hossein
    Fattahi, Abdolmajid
    Sargazi, Mojtaba
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (06)
  • [30] On Weaving Fusion Frames for Hilbert Spaces
    Deepshikha
    Garg, Saakshi
    Vashisht, Lalit K.
    Verma, Geetika
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 381 - 385