Frames in Quaternionic Hilbert Spaces

被引:0
|
作者
Sharma, Sumit Kumar [1 ]
Goel, Shashank [2 ]
机构
[1] Univ Delhi, Kirori Mal Coll, Delhi 110007, India
[2] Amity Univ, Amity Inst Appl Sci, Noida 201301, UP, India
关键词
frame; quaternionic Hilbert spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce and study the frames in separable quaternionic Hilbert spaces. The results on the existence of frames in quaternionic Hilbert spaces and a characterization of frames in quaternionic Hilbert spaces in terms of frame operator are given. Finally, a Paley-Wiener type perturbation result for the frames in a quaternionic Hilbert space has been obtained.
引用
收藏
页码:395 / 411
页数:17
相关论文
共 50 条
  • [1] Woven Frames in Quaternionic Hilbert Spaces
    Sharma, S. K.
    Sharma, Nitin
    Poumai, Khole Timothy
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [2] On a Characterization of Frames for Operators in Quaternionic Hilbert Spaces
    Charfi, Salma
    Ellouz, Hanen
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (02) : 194 - 208
  • [3] Quantum Injectivity of Frames in Quaternionic Hilbert Spaces
    Xu, Zhenheng
    Hong, Guoqing
    Guo, Zuhua
    Zhang, Jianxia
    [J]. MATHEMATICS, 2024, 12 (14)
  • [4] PERTURBATION OF CONTINUOUS FRAMES ON QUATERNIONIC HILBERT SPACES
    Khokulan, M.
    Thirulogasanthar, K.
    [J]. OPERATORS AND MATRICES, 2024, 18 (02): : 295 - 317
  • [5] Some Properties of K-Frames in Quaternionic Hilbert Spaces
    Hanen Ellouz
    [J]. Complex Analysis and Operator Theory, 2020, 14
  • [6] Some Properties of Operator Valued Frames in Quaternionic Hilbert Spaces
    Hong, Guoqing
    Li, Pengtong
    [J]. MATHEMATICS, 2023, 11 (01)
  • [7] Some Properties of K-Frames in Quaternionic Hilbert Spaces
    Ellouz, Hanen
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
  • [8] S-spectrum and associated continuous frames on quaternionic Hilbert spaces
    Khokulan, M.
    Thirulogasanthar, K.
    Muraleetharan, B.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 96 : 107 - 122
  • [9] On the Weak Topology of Quaternionic Hilbert Spaces
    Fashandi, M.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (01)
  • [10] NORMAL OPERATORS ON QUATERNIONIC HILBERT SPACES
    VISWANATH, K
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 162 (NDEC) : 337 - +