Some Properties of Operator Valued Frames in Quaternionic Hilbert Spaces

被引:0
|
作者
Hong, Guoqing [1 ]
Li, Pengtong [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
frame; quaternionic Hilbert space; operator valued frame;
D O I
10.3390/math11010188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quaternionic Hilbert spaces play an important role in applied physical sciences especially in quantum physics. In this paper, the operator valued frames on quaternionic Hilbert spaces are introduced and studied. In terms of a class of partial isometries in the quaternionic Hilbert spaces, a parametrization of Parseval operator valued frames is obtained. We extend to operator valued frames many of the properties of vector frames on quaternionic Hilbert spaces in the process. Moreover, we show that all the operator valued frames can be obtained from a single operator valued frame. Finally, several results for operator valued frames concerning duality, similarity of such frames on quaternionic Hilbert spaces are presented.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Some Properties of K-Frames in Quaternionic Hilbert Spaces
    Hanen Ellouz
    [J]. Complex Analysis and Operator Theory, 2020, 14
  • [2] Some Properties of K-Frames in Quaternionic Hilbert Spaces
    Ellouz, Hanen
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
  • [3] Frames in Quaternionic Hilbert Spaces
    Sharma, Sumit Kumar
    Goel, Shashank
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2019, 15 (03) : 395 - 411
  • [4] Operator Characterizations and Some Properties of g-Frames on Hilbert Spaces
    Guo, Xunxiang
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [5] Woven Frames in Quaternionic Hilbert Spaces
    Sharma, S. K.
    Sharma, Nitin
    Poumai, Khole Timothy
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] On a Characterization of Frames for Operators in Quaternionic Hilbert Spaces
    Charfi, Salma
    Ellouz, Hanen
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (02) : 194 - 208
  • [7] Quantum Injectivity of Frames in Quaternionic Hilbert Spaces
    Xu, Zhenheng
    Hong, Guoqing
    Guo, Zuhua
    Zhang, Jianxia
    [J]. MATHEMATICS, 2024, 12 (14)
  • [8] PERTURBATION OF CONTINUOUS FRAMES ON QUATERNIONIC HILBERT SPACES
    Khokulan, M.
    Thirulogasanthar, K.
    [J]. OPERATORS AND MATRICES, 2024, 18 (02): : 295 - 317
  • [9] SOME PROPERTIES OF OPERATOR-VALUED FRAMES
    Laura GAVRUTA
    Pasc GAVRUTA
    [J]. Acta Mathematica Scientia, 2016, (02) : 469 - 476
  • [10] SOME PROPERTIES OF OPERATOR-VALUED FRAMES
    Gavruta, Laura
    Gavruta, Pasc
    [J]. ACTA MATHEMATICA SCIENTIA, 2016, 36 (02) : 469 - 476