PERTURBATION OF CONTINUOUS FRAMES ON QUATERNIONIC HILBERT SPACES

被引:0
|
作者
Khokulan, M. [1 ]
Thirulogasanthar, K. [2 ]
机构
[1] Univ Jaffna, Dept Math & Stat, Thirunelveli, Jaffna, Sri Lanka
[2] Concordia Univ, Dept Comp Sci & Software Engn, 1455 Maisonneuve Blvd West, Montreal, PQ H3G 1M8, Canada
来源
OPERATORS AND MATRICES | 2024年 / 18卷 / 02期
关键词
Quaternions; quaternion Hilbert spaces; frames; frame multipliers; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we explore the theory of continuous frame perturbations in the quaternion settings by inspiration of the well-developed theory of perturbing discrete frames in complex Hilbert spaces. We examine the perturbation of continuous frames of rank n , including Bessel and Riesz families, within right quaternionic Hilbert spaces. We also investigate some results on the bounds of perturbing continuous frames under some conditions.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 50 条
  • [1] Frames in Quaternionic Hilbert Spaces
    Sharma, Sumit Kumar
    Goel, Shashank
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2019, 15 (03) : 395 - 411
  • [2] Woven Frames in Quaternionic Hilbert Spaces
    Sharma, S. K.
    Sharma, Nitin
    Poumai, Khole Timothy
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [3] S-spectrum and associated continuous frames on quaternionic Hilbert spaces
    Khokulan, M.
    Thirulogasanthar, K.
    Muraleetharan, B.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2015, 96 : 107 - 122
  • [4] On a Characterization of Frames for Operators in Quaternionic Hilbert Spaces
    Charfi, Salma
    Ellouz, Hanen
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (02) : 194 - 208
  • [5] Quantum Injectivity of Frames in Quaternionic Hilbert Spaces
    Xu, Zhenheng
    Hong, Guoqing
    Guo, Zuhua
    Zhang, Jianxia
    [J]. MATHEMATICS, 2024, 12 (14)
  • [6] CONTINUOUS FRAMES IN HILBERT SPACES
    Rahimi, A.
    Najati, A.
    Dehghan, Y. N.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2006, 12 (02): : 170 - 182
  • [7] Some Properties of K-Frames in Quaternionic Hilbert Spaces
    Hanen Ellouz
    [J]. Complex Analysis and Operator Theory, 2020, 14
  • [8] Some Properties of Operator Valued Frames in Quaternionic Hilbert Spaces
    Hong, Guoqing
    Li, Pengtong
    [J]. MATHEMATICS, 2023, 11 (01)
  • [9] Some Properties of K-Frames in Quaternionic Hilbert Spaces
    Ellouz, Hanen
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
  • [10] Multipliers for continuous frames in Hilbert spaces
    Balazs, P.
    Bayer, D.
    Rahimi, A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (24)