Dual spaces and inequalities of new weak martingale Hardy spaces

被引:0
|
作者
W. Fan
A. Yang
机构
[1] Central South University,School of Mathematics and Statistics
[2] Hunan University,School of Mathematics
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
weak martingale Hardy space; weight; atomic decomposition; martingale inequality; duality; primary 60G46; secondary 60G42; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and investigate the weak weighted martingale Hardy spaces Λp,∞s(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{p,\infty}^s(\omega)$$\end{document}, where 0<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<\infty$$\end{document}, ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} is a weight and s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} is the conditional square function. This new family of spaces provides a framework which unifies various kinds of weak martingale Hardy spaces, including weak martingale Orlicz–Hardy spaces, weak martingale Karamata–Hardy spaces, weak martingale Orlicz–Karamata–Hardy spaces, and so on. We establish the atomic decompositions for Λp,∞s(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{p,\infty}^s(\omega)$$\end{document}, and then apply the atomic decompositions to deduce some new martingale inequalities and duality theorems. We discuss similar results for the Hardy spaces Λp,∞∗(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{p,\infty}^*(\omega)$$\end{document}, Λp,∞S(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{p,\infty}^S(\omega)$$\end{document}, Pp,∞(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P_{p,\infty}(\omega)$$\end{document} and Qp,∞(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal Q_{p,\infty}(\omega)$$\end{document} as well. The results obtained here generalize the corresponding known results in various weak martingale Hardy spaces.
引用
收藏
页码:134 / 157
页数:23
相关论文
共 50 条
  • [1] Dual spaces and inequalities of new weak martingale Hardy spaces
    Fan, W.
    Yang, A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2023, 169 (01) : 134 - 157
  • [2] Dual spaces of weak martingale Hardy–Lorentz–Karamata spaces
    K. Liu
    D. Zhou
    [J]. Acta Mathematica Hungarica, 2017, 151 : 50 - 68
  • [3] Dual spaces of weak martingale Hardy-Lorentz-Karamata spaces
    Liu, K.
    Zhou, D.
    [J]. ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 50 - 68
  • [4] Dual Spaces for Weak Martingale Hardy Spaces Associated with Rearrangement-Invariant Spaces
    Quan, Xingyan
    Silas, Niyonkuru
    Xie, Guangheng
    [J]. POTENTIAL ANALYSIS, 2024, 61 (01) : 83 - 109
  • [5] Dual spaces for variable martingale Lorentz–Hardy spaces
    Yong Jiao
    Ferenc Weisz
    Lian Wu
    Dejian Zhou
    [J]. Banach Journal of Mathematical Analysis, 2021, 15
  • [6] The dual spaces of martingale Hardy-Lorentz spaces
    Ren, Yanbo
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 86 (3-4): : 457 - 463
  • [7] DUAL SPACES AND JOHN-NIRENBERG INEQUALITIES OF MARTINGALE HARDY-LORENTZ-KARAMATA SPACES
    Jiao, Yong
    Xie, Guangheng
    Zhou, Dejian
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (02): : 605 - 623
  • [8] Weak martingale Hardy spaces and weak atomic decompositions
    Hou Youliang
    Ren Yanbo
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (07): : 912 - 921
  • [9] Weak martingale Hardy spaces and weak atomic decompositions
    Youliang Hou
    Yanbo Ren
    [J]. Science in China Series A, 2006, 49 : 912 - 921
  • [10] Weak martingale Hardy spaces and weak atomic decompositions
    HOU Youliang & REN Yanbo School of Mathematics and Statistics
    Department of Mathematics & Physics
    [J]. Science China Mathematics, 2006, (07) : 912 - 921