Dual spaces and inequalities of new weak martingale Hardy spaces

被引:0
|
作者
W. Fan
A. Yang
机构
[1] Central South University,School of Mathematics and Statistics
[2] Hunan University,School of Mathematics
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
weak martingale Hardy space; weight; atomic decomposition; martingale inequality; duality; primary 60G46; secondary 60G42; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and investigate the weak weighted martingale Hardy spaces Λp,∞s(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{p,\infty}^s(\omega)$$\end{document}, where 0<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<\infty$$\end{document}, ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} is a weight and s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document} is the conditional square function. This new family of spaces provides a framework which unifies various kinds of weak martingale Hardy spaces, including weak martingale Orlicz–Hardy spaces, weak martingale Karamata–Hardy spaces, weak martingale Orlicz–Karamata–Hardy spaces, and so on. We establish the atomic decompositions for Λp,∞s(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{p,\infty}^s(\omega)$$\end{document}, and then apply the atomic decompositions to deduce some new martingale inequalities and duality theorems. We discuss similar results for the Hardy spaces Λp,∞∗(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{p,\infty}^*(\omega)$$\end{document}, Λp,∞S(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda_{p,\infty}^S(\omega)$$\end{document}, Pp,∞(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal P_{p,\infty}(\omega)$$\end{document} and Qp,∞(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal Q_{p,\infty}(\omega)$$\end{document} as well. The results obtained here generalize the corresponding known results in various weak martingale Hardy spaces.
引用
收藏
页码:134 / 157
页数:23
相关论文
共 50 条
  • [41] Martingale Orlicz-Hardy spaces
    Miyamoto, Takashi
    Nakai, Eiichi
    Sadasue, Gaku
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) : 670 - 686
  • [42] MARTINGALE HARDY SPACES WITH VARIABLE EXPONENTS
    Jiao, Yong
    Zhou, Dejian
    Hao, Zhiwei
    Chen, Wei
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (04): : 750 - 770
  • [43] MARTINGALE TRANSFORMS AND HARDY-SPACES
    CHAO, JA
    LONG, RL
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (3-4) : 399 - 404
  • [44] Martingale transforms in martingale Hardy spaces with variable exponents
    Ma, Tao
    Lu, Jianzhong
    Wu, Xia
    [J]. AIMS MATHEMATICS, 2024, 9 (08): : 22041 - 22056
  • [45] Interpolation of martingale Orlicz–Hardy spaces
    L. Long
    H. Tian
    D. Zhou
    [J]. Acta Mathematica Hungarica, 2021, 163 : 276 - 294
  • [46] Martingale Hardy spaces and the dyadic derivativeМартингальное пространство Харди и диадическая производная
    Ferenc Weisz
    [J]. Analysis Mathematica, 1998, 24 (1) : 59 - 77
  • [47] Martingale inequalities and fractional integral operator in variable Hardy-Lorentz spaces
    Zeng, Dan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (01)
  • [48] Interpolation for martingale Hardy spaces over weighted measure spaces
    Y. Jiao
    P. -D. Liu
    L. -H. Peng
    [J]. Acta Mathematica Hungarica, 2008, 120 : 127 - 139
  • [49] Interpolation for martingale hardy spaces over weighted measure spaces
    Jiao, Y.
    Liu, P. -D.
    Peng, L. -H.
    [J]. ACTA MATHEMATICA HUNGARICA, 2008, 120 (1-2) : 127 - 139
  • [50] Real interpolation of martingale Orlicz Hardy spaces and BMO spaces
    Long, Long
    Weisz, Ferenc
    Xie, Guangheng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)