The dual spaces of martingale Hardy-Lorentz spaces

被引:3
|
作者
Ren, Yanbo [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2015年 / 86卷 / 3-4期
基金
中国国家自然科学基金;
关键词
martingale space; Hardy Lorentz space; Lipschitz space; BMO space; atomic decomposition; ATOMIC DECOMPOSITIONS; OPERATORS;
D O I
10.5486/PMD.2015.7093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the dual spaces of martingale Hardy Lorentz spaces H-p,H- (s)(q) are identified by use of the technique of atomic decomposition. We show that the dual spaces of martingale Hardy Lorentz spaces H-p,H- (s)(q) are A(2) (alpha), where 0 <p < 1, 0 < q <= 1, alpha = 1/p - 1.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 50 条
  • [1] Martingale transforms between Hardy-Lorentz spaces
    He, Min
    Yu, Lin
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 137 : 46 - 53
  • [2] MARTINGALE HARDY-LORENTZ SPACES - A UNIFIED APPROACH
    Fan, Wenfei
    Jiao, Yong
    Wu, Lian
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2023, 75 (04) : 533 - 560
  • [3] Atomic Decompositions of Martingale Hardy-Lorentz Spaces and Interpolation
    Mohsenipour, Maryam
    Sadeghi, Ghadir
    [J]. FILOMAT, 2017, 31 (19) : 5921 - 5929
  • [4] Dual spaces for variable martingale Lorentz–Hardy spaces
    Yong Jiao
    Ferenc Weisz
    Lian Wu
    Dejian Zhou
    [J]. Banach Journal of Mathematical Analysis, 2021, 15
  • [5] WEAK ATOMIC DECOMPOSITIONS OF MARTINGALE HARDY-LORENTZ SPACES AND APPLICATIONS
    Ren Yanbo
    Guo Tiexin
    [J]. ACTA MATHEMATICA SCIENTIA, 2012, 32 (03) : 1157 - 1166
  • [6] WEAK ATOMIC DECOMPOSITIONS OF MARTINGALE HARDY-LORENTZ SPACES AND APPLICATIONS
    任颜波
    郭铁信
    [J]. Acta Mathematica Scientia, 2012, 32 (03) : 1157 - 1166
  • [7] Dual Spaces of Anisotropic Variable Hardy-Lorentz Spaces and Their Applications
    Liu, Jun
    Lu, Yaqian
    Huang, Long
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (02) : 913 - 942
  • [8] Equivalent characterizations of martingale Hardy-Lorentz spaces with variable exponents
    Weisz, Ferenc
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (03): : 783 - 800
  • [9] Dual spaces of weak martingale Hardy–Lorentz–Karamata spaces
    K. Liu
    D. Zhou
    [J]. Acta Mathematica Hungarica, 2017, 151 : 50 - 68
  • [10] Dual spaces for variable martingale Lorentz-Hardy spaces
    Jiao, Yong
    Weisz, Ferenc
    Wu, Lian
    Zhou, Dejian
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)