A note on commutator subgroups in groups of large cardinality

被引:0
|
作者
Maria De Falco
Francesco de Giovanni
Carmela Musella
机构
[1] Università di Napoli Federico II,Dipartimento di Matematica e Applicazioni
[2] Complesso Universitario Monte S. Angelo,undefined
来源
关键词
Uncountable group; Commutator subgroup; Normality; 20F14;
D O I
暂无
中图分类号
学科分类号
摘要
If G is an uncountable group of regular cardinality ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}, we shall denote by LLℵ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {L}L}_\aleph (G)$$\end{document} the set of all subgroups of G of cardinality ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}. The aim of this paper is to describe the behaviour of groups G for which the set Cℵ(G)={X′|X∈LLℵ(G)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {C}}}_\aleph (G)=\{ X'\;|\; X\in {\mathfrak {L}L}_\aleph (G)\}$$\end{document} is finite, at least when G is locally graded and has no simple sections of cardinality ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}. Among other results, it is proved that such a group has a finite commutator subgroup, provided that it contains an abelian subgroup of cardinality ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}.
引用
收藏
页码:249 / 256
页数:7
相关论文
共 50 条
  • [41] Torsion Free Commutator Subgroups of Generalized Coxeter Groups
    Hidalgo R.A.
    Rosenberger G.
    Results in Mathematics, 2005, 48 (1-2) : 50 - 64
  • [42] RATIONAL POINTS OF COMMUTATOR SUBGROUPS OF SOLVABLE ALGEBRAIC GROUPS
    FAUNTLER.A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 194 (JUL) : 249 - 275
  • [43] Commutator subgroups of Vershik-Kerov groups for infinite symplectic groups
    Hou, Xin
    Li, Shangzhi
    Yang, Yucheng
    SCIENCEASIA, 2017, 43 (05): : 319 - 325
  • [44] BREADTH, CLASS AND COMMUTATOR SUBGROUPS OF P-GROUPS
    VAUGHANLEE, MR
    WIEGOLD, J
    JOURNAL OF ALGEBRA, 1974, 32 (02) : 268 - 277
  • [45] The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups
    Kozlov, V. A.
    Titov, G. N.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2021, 21 (04): : 442 - 447
  • [46] CENTRAL SERIES AND SERIES OF COMMUTATOR SUBGROUPS FOR SOME SUBGROUPS OF CHEVALLEY-GROUPS
    LEVCHUK, VM
    DOKLADY AKADEMII NAUK SSSR, 1990, 313 (04): : 799 - 802
  • [47] Large characteristic subgroups satisfying multilinear commutator identities
    N. Yu. Makarenko
    E. I. Khukhro
    Doklady Mathematics, 2007, 75 : 112 - 114
  • [48] COMMUTATOR SUBGROUPS
    FRANKL, P
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1976, 27 (1-2): : 193 - 195
  • [49] Large characteristic subgroups satisfying multilinear commutator identities
    Makarenko, N. Yu.
    Khukhro, E. I.
    DOKLADY MATHEMATICS, 2007, 75 (01) : 112 - 114
  • [50] Commutator subgroups and crystallographic quotients of virtual extensions of symmetric groups
    Kumar, Pravin
    Naik, Tushar Kanta
    Nanda, Neha
    Singh, Mahender
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (11)